
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information C om pany

300 North Z eeb Road, Ann Arbor. Ml 48106-1346 USA
313/761-4700 800/521-0600

www.manaraa.com

Order Num ber 9214570

A computer-aided software engineering toolkit for the
integration of CAD/CAM application software in a network
environment

Grieshaber, Michele Marie, Ph.D.

Virginia Polytechnic Institute and State University, 1991

300N. ZeebRd.Ann Aibor, MI 48106

www.manaraa.com

A COMPUTER-AIDED SOFTWARE ENGINEERING TOOLKIT
FOR THE INTEGRATION OF CAD/CAM

APPLICATION SOFTWARE IN A NETWORK ENVIRONMENT

by

Michele M. Grieshaber

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Mechanical Engineering

Approved:

Dr. A. Myklgrast, Chairman

(s Dr. J. R. Mahan Dr. M. Deisenroth

Dr. S. Jayaram

November 21, 1991

Blacksburg, Virginia

www.manaraa.com

A Computer-Aided Software Engineering Toolkit for the
Integration of CAD/CAM Application Software in a Network Environment

by
Michele Marie Grieshaber

(Abstract)

Much progress has been made in recent years in the development of Computer-Aided

Design and Computer-Aided Manufacturing (CAD/CAM) tools for engineering design,

analysis, and manufacturing. Unfortunately, most of these CAD/CAM applications

were constructed independently and without standardization. In essence, they automate

a single aspect of design, analysis, or manufacturing and cannot be combined to form a

cohesive environment, since integration among applications was not addressed during

the design phase of CAD/CAM application software creation.

In view of this problem, a novel approach is suggested for software integration of

applications in a network environment. The distributed integration solution described

in this dissertation employs a new "integration client/server" relationship, where the

integration server is the core of the system, providing functions to translate or

transform data between applications. The integration client consists of an interface

with the server, a CAD/CAM application, and a user interface with the integrated

system called the GRIM (GRaphical Interface Manager). There is only one integration

server in the system, but there may be an unlimited number of clients.

The solution created for distributed integration is implemented in a Computer-Aided

Software Engineering (CASE) workbench, geared specifically toward the generation of

integration systems. This workbench is known as the CAD/CAM CASE Workbench,

and includes an integration solution as well as standard CASE tools. The integration

www.manaraa.com

solution contains several tools which will aid a system designer in generating

integration systems for CAD/CAM applications. Included is the distributed integration

solution described in this dissertation. The distributed integration solution is designed

to facilitate the semi-automatic generation of an integration system. It consists of an

integration server at the center of the integration system which manages the exchange

of data among the integration clients. The integration clients are the CAD/CAM

applications in the context of the integration system. To use the distributed integration

solution, the integration system designer will customize portions of the structure charts,

data dictionary, and module specifications contained in the workbench according to the

needs of the applications programs and generate C-source code defining the integration

system.

Using the distributed integration solution, the user will be able to effect data requests

for applications, using the GRIM to interact with the system. All data exchanges are

request driven. In addition to the distributed integration solution, this research includes

a prototype integrated system which allows data to be requested from one application,

and translated to a second for display and manipulation. The prototype was tested in a

distributed environment and the results are described.

www.manaraa.com

ACKNOWLEDGEMENTS

Funding for this research was provided by the IBM Corporation. I would like to thank

A1 Bracco, Alan Levit, and Tony Fiore for their help and support during the course of

this project. I would also like to express my sincere thanks to Paul Clarke for helping

me in more ways than he knows.

It is impossible for me to express the gratitude I have for the guidance I have received

from my two advisors, without whom, my education and my outlook would not have

been the same. Dr. J. R. Mahan served as my master's thesis advisor and has been

instrumental in my development as an engineer and as a citizen of the world. His

foresight and encouragement made it possible for me to spend two separate sejours in

France. If he had not handed me an application for the Fulbright scholarship I may

never have applied. My current advisor, Dr. Arvid Myklebust, has shown me the true

meaning of the term doctor in philosophy. The constant encouragement he offered me

over the past four years has helped me to become confident and capable in more than

just my field of study. In addition, I would like to thank the members of my

committee for their willingness to share knowledge and advice with me both before and

during the course of this research.

I would further like to thank two individuals for getting me through long nights in the

lab. Ludwig von Beethoven for composing his sixth and ninth symphonies and Martin

Grunau for cheering me up and calming me down.

And finally, to my family for the love and support they have given to me during my

time at VPI and throughout my life.

Acknowledgements iv

www.manaraa.com

TABLE OF CONTENTS

1.0 INTRODUCTION.. 1

2.0 LITERATURE REVIEW...6

2.1 Integration of CAD/CAM Applications...6

2.2 CASE and Its Role in Integration............................. 10

2.3 Summary... ...12

3.0 THE CAD/CAM CASE WORKBENCH...13

3.1 CAD/CAM CASE Workbench Background.. 13

3.2 Purpose of the CAD/CAM CASE Workbench.. 14

3.2.1 Categories of Integration................................ 16

4.0 THE DISTRIBUTED INTEGRATION SOLUTION..19

4.1 The Integration Client... 30

4.1.1 AP/SOCK Interface.. 33

4.1.2 The CAD Application.. 34

4.1.3 The GRIM Widget..36

4.2 The Integration Server... 43

4.3 Communications... 47

5.0 STRUCTURED ANALYSIS AND STRUCTURED DESIGN......................... 49

5.1 Structured Analysis and Requirements Specification.................................... 49

5.2 Structured Design..53

6.0 INTEGRATION TOOLKIT...58

6.1 Data Flow Perspective of the Distributed Integration Solution..................... 63

6.2 The Distributed integration solution in Structure Charts...............................72

6.2.1 GRIM Structure Charts...73

6.2.2 Client Application Structure Charts...79

Table o f Contents v

www.manaraa.com

6.2.3 Integration Server Structure Charts.. 87

7.0 DISTRIBUTED INTEGRATION SOLUTION PROTOTYPE........................... 95

7.1 The ACSYNT Client Application... 98

7.2 B-Spline Client Application...104

7.3 The Prototype Integration Server................................. 109

7.4 Data Exchange in the Prototypical Integration System.................................I l l

8.0 CONCLUSIONS... 119

REFERENCES..123

APPENDIX A: DATA DICTIONARY... 126

APPENDIX B: DATA FLOW DIAGRAMS / P-SPECS.. 136

APPENDIX C: GRIM STRUCTURE CHARTS / M-SPECS................................... 201

APPENDIX D: CLIENT APPLICATION STRUCTURE CHARTS / M-

SPECS.. 251

APPENDIX E: INTEGRATION SERVER STRUCTURE CHARTS / M-

SPECS.. 306

APPENDIX F: UTILITIES,ETC.. 352

V ITA ...359

Table o f Contents vi

www.manaraa.com

I

LIST OF FIGURES

Figure 1: Paradigm for the generation of CAD/CAM integration systems

[Penn91]..2

Figure 2: CAD/CAM CASE Workbench..15

Figure 3: Integration client/server relationship...24

Figure 4: Motif toolkit above Xtlntrinsics above X... 26

Figure 5: Client AP/SOCK connected to application by proprietary interface 29

Figure 6: Client data routed through AP/SOCK Interface... 32

Figure 7: Basic GRIM widget..39

Figure 8: Sample transfer function..46

Figure 9: Software development life-cycle............... 50

Figure 10: Components of a data flow diagram...52

Figure 11: The Yourdon structured design process [Page88].....................................54

Figure 12: An example showing structure chart components....................................57

Figure 13: Integration toolkit in CASE environment.. 60

Figure 14: Context Diagram of the integration system................................65

Figure 15: Data flow diagram of the integration server and clients - DFD 0........... 67

Figure 16: Data flow diagram of the client interface - DFD 1.................................. 69

Figure 17: Data flow diagram of the integration server - DFD 2.1...........................71

Figure 18: GRIM widget displaying attribute list... 80

Figure 19: Sample relation file entries.. 89

Figure 20: Request/response sequence.. 102

Figure 21: B-Spline MODEL data structure..105

Figure 22: Prototype client applications and integration server..................................113

Figure 23: The ACSYNT client application..114

List o f Figures vii

www.manaraa.com

Figure 24: The B-Spline client application prototype.. 116

Figure 25: B-Spline and ACSYNT clients running on the same workstation............. 118

List o f Figures viii

www.manaraa.com

LIST OF TABLES

Table 1: GRIM opcode table... 78

Table 2: Client application opcode table..84

Table 3: Integration server opcode table..92

Table 4: The ACSYNT client application opcode table.. 103

Table S: The B-Spline client application opcode table.. 108

Table 6: Integration server prototype opcode table... 112

List o f Tables ix

www.manaraa.com

1.0 INTRODUCTION

Much progress has been made in recent years in the development of Computer-Aided

Design and Computer-Aided Manufacturing (CAD/CAM) tools for engineering design,

analysis, and manufacturing. Unfortunately, most of these CAD/CAM applications

were constructed independently and without standardization. In essence, they automate

a single aspect of design, analysis, or manufacturing and cannot be combined to form a

cohesive environment, since integration among applications was not addressed during

the design phase of CAD/CAM application software creation. Additional refinement of

individual tools will only provide diminishing returns until the sharing of data, and

possibly functions, among them is also automated within the framework of an

integrated environment.

The problem of software integration is difficult enough to solve on a single platform;

the existence of software applications residing on different workstations in a network

configuration significantly complicates the task. The first question addressed in this

research is "What is an effective integration solution for dissimilar CAD software

applications in a network environment?" The answer to this question involves CASE

technology and the second question which arises is "How can successive

implementations of this distributed integration solution be enabled in a semi-automatic

fashion using CASE tools?" Although this is the order in which the questions are

addressed in this dissertation, the overall problem which was resolved is the one which

deals with the paradigm for generation of integration systems. Figure 1 depicts this

paradigm and shows a CASE workbench. This workbench contains a toolkit designed

to facilitate the task of an integration system designer by generating source code which

describes an integration system. The ultimate goal of this research is to create a CASE

Introduction 1

www.manaraa.com

CADAPPLICATION
PROGRAMS

OTHERDESIGN
SUPPORTSOFTWARE

MANUFACTURING APPLICATION PROGRAMS

CAD/CAM
INTEGRATION

SYSTEM

CASE INTEGRATION TOOLKIT
I I

INTEGRATION SYSTEM
GENERATOR

DESIGN
&ANALYSIS TOOLS

AUTOMATIC CODE GENERATIO

CAD/CAM INTEGRATION
INTERFACE

COMPUTER-AIDED SOFTWARE ENGINEERING (CASE) WORKBENCH FOR CAD/CAM

C V C TC M

SPECIFICATIONS Q

INTEGRATIONSYSTEMDESIGNER

figure I: Paradigm for the generation of CAD/CAM integration systems [Penn91].

Introduction 2

www.manaraa.com

workbench capable of generating integration systems. In order to achieve this goal, it

is necessary to develop a scheme for integration in a network environment which will

lend itself to development into a set of CASE tools.

While the ultimate idea of CASE is to be able to specify design requirements and

generate source code from those specifications, the state of the art has not quite reached

that point. In reality, there may be some necessary degree of manual interaction in the

development process, be it writing pseudo-code or actual code, even though the overall

code structure may be generated. The function of a CASE tool is to leverage the

development process, ideally automating it, but not necessarily. This is a critical point

because integration may require, on the part of the integration system designers, in-

depth knowledge of all applications targeted for incorporation in the system. This

includes knowledge of the various data structures used in the applications. This

condition is also imposed by the creators of an earlier integration enabler called the

Environment for Application Software Integration and Execution (EASIE) [Rowe88].

They state "[data specific information] can only be provided by the program experts or

application programmers who are intimately familiar with the codes being integrated."

They also state that "no software tools can substitute for this knowledge."

Though development of the initial system relies heavily on knowledgeable individuals,

maintenance of the resulting system will not require the same expertise, since the

system will have been analyzed, designed, and implemented with the aid of a

CAD/CAM CASE Workbench [Penn91]. The CAD/CAM CASE Workbench is a

CASE workbench which has been modified to include a toolkit used primarily for the

generation of integration systems for CAD/CAM applications. Important information

on the parameters of the integrated system will therefore be available from the database

Introduction 3

www.manaraa.com

contained in the workbench. In addition, the workbench will enable programmers to

reverse engineer, at both the design and the analysis levels, the codes to be integrated

and extract necessary data from them to assist in producing the integrated environment.

The CAD/CAM CASE Workbench, originally specified by Pennington [Penn91], was

designed to address the integration of engineering CAD/CAM applications. This is a

novel approach to integration, considering that there are relatively few commercially

available CASE systems geared toward the requirements of engineering; the bulk of the

systems are business related. The CASE Integration Toolkit, contained in this

workbench, will contain tools to implement the distributed integration solution

described in this document. These tools will be in the form of generic data flow

diagrams and structure charts which can be tailored to fit the integrated system through

use of analysis and design tools and source code generators present in the CASE

workbench. The resulting integration system will be described by these generic data

flow diagrams (DFD's) and structure charts, along with other DFD's and structure

charts created by the integration system designer. The final integration system will be

generated from these structure charts, module specifications (which describe each

module of a structure chart), and the data dictionary by using the C-source code

generator included in the CASE workbench.

The following discussions explore the question of integration in terms of the integration

mechanism, the feasibility of a system utilizing this mechanism in a network

environment, and the ease with which an integration system designer can employ

specific CASE tools, including the CAD/CAM Integration Toolkit to analyze, design,

and realize the final integrated system.

Introduction 4

www.manaraa.com

The research conducted for this dissertation has the following goals:

1) identify mechanisms for interclient communication for integration
2) design CASE tools which will facilitate the generation of integration systems for

CAD/CAM applications in a network environment
3) create a distributed integration solution which is effective in managing the

exchange of data among applications in the integration system and which lends
itself to developments into a set of CASE tools

4) demonstrate feasibility of the integration solution by using two CAD
applications running in a distributed environment

The structure of the dissertation is as follows: a survey of pertinent literature which

explores past work on the integration of CAD/CAM applications and CASE tools as a

means to achieve integration, an overview of how the integration solution created in

this research will fit into the CAD/CAM CASE workbench philosophy, an in-depth

description of the integration solution, a discussion of the development process for the

integration process explained using data flow diagrams, a discussion of the format of

the tools created to effect the integration solution, and concluding remarks about the

research presented in this dissertation. This is followed by details on the

implementation of the distributed integration solution and a prototype integration

system using this workbench for two aircraft design CAD programs.

Introduction 5

www.manaraa.com

2.0 LITERATURE REVIEW

The literature related to the integration of CAD/CAM applications is extensive and

varies with respect to the levels of integration achieved. A few relevant papers are

reviewed here.

2.1 Intearation of CAD/CAM Applications

In July 1990 Pennington [Mykl90] conducted an industry-wide survey on integration.

The survey results indicated that there does not seem to be a consensus on the exact

interpretation of the term "integration". To some of the respondents, integration meant

the sharing of information (data) among applications, even if that required the manual

reentry of data. Pennington points out that of the respondents to the CAD/CAM

integration survey, those who reported the most successful and flexible systems were

companies who employed a common database to effect the integration. Two further

conclusions obtained from the survey show that source code is readily available for

most of the CAD/CAM applications targeted for integration. This availability is a

result of in-house development of much analysis code. Furthermore, it was found that

there is a growing trend in companies toward stand-alone workstations in a networked

environment.

To date, most of the work on integration has been done using neutral formats such as

IGES (Initial Graphics Exchange Specification). Liewald and Kencott [Liew82],

though advocates of integration using such formats, were also cognizant of the

limitations of this method on the goal of total integration. According to a report

prepared by the Boeing Commercial Airplane Company [Brau85], some of the more

Literature Review 6

www.manaraa.com

serious IGES flaws include its inefficient file structure, its inflexible data definitions,

and its orientation toward graphical representation of a product's design. Farish

[Fari90] conveys some of the frustration companies face when using neutral formats.

He reports on five experimental projects sponsored by the SMMT (Society of Motor

Manufacturers and Traders) which were conducted among several well-known British

companies. The goal of the test was to swap CAD information in the best-known data

exchange format, IGES. Farish reports that although "IGES can handle geometry, it is

not reliable at maintaining the integrity of associated information."

In response to the need to resolve the limitations of IGES, a formal study called the

PDES Initiation Effort was begun in 1985 [Furl90]. The objective of PDES (now

called the Product Data Exchange using STEP) is to develop a neutral exchange

medium capable of completely representing product data. STEP is the proposed

international exchange standard. Unfortunately, the PDES exchange standard will not

be available until sometime after 1995, and therefore does not address the immediate

need for a solution to integration problems.

As a result of the disappointing results obtained with neutral formats, the recent trend

has been towards other means of integration, mainly databases. Encamacao [Enca90]

contends that when contrasted with classical file systems (where every file contains data

whose structure matches exactly the requirements of one specific application program),

database systems provide for the integration of data for all applications within a

corporation. Furthermore, data redundancy, which causes storage overhead and update

problems, is avoided and only a minimum of data must be replicated by the system.

Literature Review 7

www.manaraa.com

Several specific and sophisticated examples of integration via database exist. Fenves et

al. [Fenv90] developed an integrated software environment for building design and

construction which integrates seven independent, computational programs. They claim

that integrated systems in industry achieve a high level of data integration by tieing

CAD/CAM software and analysis programs together through a shared database - a

premise which they use in the development of their integrated system. Colton and

Dascanino [Colt91] designed and implemented an integrated, intelligent design

environment. The system enables the engineer to design custom mechanical parts and

store related data in a database which is checked by an expert system to ensure

manufacturability and assembly. It is important to note that this is a dedicated

integrated system, meaning that only tools employed in mechanical design are included

in this environment. Lu, Myklebust, and War [Lu86] developed an interface which

writes geometric representations of helicopters directly into a computer-aided design

system database via the Geometry Interface Module (GIM). This system is an excellent

example of proprietary interface use as well, since the geometric models described by

the analysis portion of the integrated system were subsequently viewed in CADAM.

Reiss [Reis90] introduced a method of integration which combines message passing in a

UNIX environment with databases. The major disadvantage of Reiss' approach is that

to add new tools to the system, it may be necessary to modify existing tools to be able

to interpret the new messages generated by the additional programs. Meyers [Meye91]

comments on this fact in his article and expands his discussion to cover canonical

representations of data structures, wherein a common structure for all data models

exists. The idea of having all tools operate on the same data structures is attractive;

however, in order to implement this in an integration scheme, existing applications

must be rewritten to utilize the new data representation. Although this type of

representation may be useful in the future, it does not address the current needs of the

Literature Review 8

www.manaraa.com

system integrator. According to Christman [Chri84], automobile companies are prime

users of integrated CAD/CAM systems with common databases. He contends that this

approach allows several engineers to access design data and work on the same part

simultaneously. This type of database interaction enables designers to practice

concurrent engineering. As an example of the effectiveness of concurrent engineering,

Chrysler has reported productivity improvements that range from 4:1 to as high as

70:1.

Although it seems that a great deal of success has been achieved by companies who

take advantage of common databases, it is only fair to admit that no comprehensive

database solution exists at the moment. Commercially available relational databases are

not equipped to meet the demands of an engineering application. Part of the reason for

this was addressed by Kim, Lorie, McNabb, and Plouffe [Kim84] who state that the

primary difference between transactions in an engineering environment and those in

conventional business applications is that an engineering transaction typically lasts

much longer and can effectively disable the database from being accessed by any other

user of the application. Kim et al. look at solving this problem by imposing the view

that a long-lived engineering transaction is really a sequence of conventional short-lived

transactions. A second problem with relational databases, as applied to engineering, is

the lack of accurate data models. Guting [Guti89] looks at this problem in a paper

where he describes the development of Gral, a relational database system that is

extensible by user-defined data types and operations. Extensions needed for geometric

database systems are addressed. As Date makes clear in his book on database systems

[Date89], CAD/CAM is still considered a relatively new area of application for

database technology, and research in the area is being vigorously pursued.

Literature Review 9

www.manaraa.com

While work is being done in the area of engineering databases, some research is

focusing on the development of tools with which to effect the integration. One such

example is a paper by Jayaram and Myklebust [Jaya90] describing a method by which

an expert system generates interfaces semi-automatically between application programs

and CAD systems. The system then creates an accurate parametric representation of

the solid geometry and places it in the CAD database. A second example is EASIE

[Rowe88], which provides a methodology and a set of utility routines for a design team

to build, maintain, and apply CAD systems consisting of large numbers of diverse

stand-alone analysis codes. EASIE contains a centralized database in which data

common to applications in the system is stored. This system addresses applications that

run as batch programs on Digital Equipment Corporation (DEC) VAX computers.

2.2 CASE and Its Role in Integration

Carma McClure [Mccl89] defines computer-aided software engineering as the

automation of software development. According to McClure, the basic idea behind

CASE is to provide a set of well-integrated, laborsaving tools which link and automate

all phases of the software life cycle. Traditionally the software life cycle consists of

analysis and specification of requirements, design, implementation and coding, test and

release, and maintenance. The following definitions from McClure are pertinent to this

discussion on CASE:

- CASE tool - a software tool that automates (at least in part) a particular
software life cycle task.

- CASE toolkit - a set of integrated CASE tools that have been designed to work
together and to automate (or partially automate) a phase of the software life
cycle or a particular software job class.

Literature Review 10

www.manaraa.com

- CASE workbench - a set of integrated CASE tools that have been designed to
work together and to automate (or provide automated assistance for) the entire
software life cycle, including analysis, design, coding, and testing.

It is important at this point not to confuse the terms "integration using CASE tools" and

"integration of CASE tools". In this dissertation, the former refers to the process of

employing CASE tools specifically created for aiding system designers in achieving the

integration of dissimilar CAD/CAM software into a cohesive design environment. The

latter refers to the current goal in CASE where the software engineering environment is

integrated by defining a framework, or integrated project support environment (IPSE),

into which CASE tools fit together. A database, or repository, is part of the

framework, and this addition allows all phases of the design cycle to access information

about each other, keeping redundancy to a minimum. Several existing CASE tools are

reviewed in articles by Smith [Smit90] and Oman [Oman90],

Marshall and Van Dyne [Mars86] discuss a design accelerator and integrator called

DesignCenter, developed by Hewlett-Packard. This again is an example of a dedicated

system, although it exists in an environment in which integrated design and CASE

tools are used in conjunction to design hardware and software for micro-processor

development. In research reports to the IBM corporation [Mykl90-l,Mykl90-2] and a

dissertation [Penn91], Pennington presents a new approach to the integration of

CAD/CAM application programs. Outlined are the requirements for a CASE

workbench and toolkit to effect the integration of CAD/CAM applications.

Literature Review 11

www.manaraa.com

2.3 Summary

The literature review suggests that an integrated design environment is key to

productivity and competitive vitality. It is clear that although many attempts have been

made to provide integrated systems, the tools for producing an integration system for

CAD/CAM applications are lacking.

Literature Review 12

www.manaraa.com

3,0 THE CAD/CAM CASE WORKBENCH

The work presented in this dissertation is, in part, based on research conducted by

Pennington [Penn91]. It is the purpose of this chapter to lay the groundwork for the

discussions which follow, by outlining requirements which apply to the CAD/CAM

CASE Workbench defined by the document cited above. Many of the criteria initially

specified for the workbench are used as assumptions and boundary conditions in this

research. The most significant will now be discussed.

3.1 CAP/CAM CASE Workbench Background

Pennington describes a CAD/CAM CASE Workbench consisting of a combination of

commercial and custom tools. A product known as Teamwork from CADRE

Technologies is specified as the backbone of the CAD/CAM CASE Workbench. The

Teamwork product includes a structured analysis tool, a structured design tool, and a

C-source code builder. In addition to the Teamwork tools, a CASE Integration

Toolkit, a High-level Autonomous Integration Model (HAIM), Interleaf Technical

Publishing Software, and an integration framework supplied by the IBM Corporation

were specified for the workbench. For the research conducted in this dissertation, the

HAIM was used as a starting point for multi-platform integration ideas. The resulting

integration system generation method is not represented in the CASE workbench as a

separate entity. Instead, the definition of the CASE Integration Toolkit, developed at

Virginia Tech, has been expanded to include all tools and conceptual models necessary

for the creation of an integration system. Furthermore, the IBM Workstation

Integration Framework has been replaced by CADRE Technologies' integrated project

The CAD/CAM CASE Workbench 13

www.manaraa.com

support environment (IPSE) following the suggestion of IBM-Manassas. An updated

diagram of the workbench components appears in Figure 2.

3.2 Purpose of the CAP/CAM CASE Workbench

The goal of the workbench is to leverage the task of an integration system designer by

providing him with integration tools in a CASE environment. Aside from the tools

normally found in a CASE workbench, a CASE CAD/CAM Integration Toolkit is

included. This toolkit contains several implements geared uniquely toward the creation

and establishment of an integrated system from dissimilar CAD and CAM applications.

One element of the toolkit is an analyzer, initially conceived and designed by

Pennington. The analyzer is currently under modification to enable it to characterize

not only those applications whose source code is available, but also applications whose

source code is not. For those without source code, characteristics of input and output

data must be known. In this case, the analyzer will accept input from the integration

system designer as to the kinds of data to expect in an output or input file.

Specifications of this type will enable the analyzer to categorize the data found in a file

targeted for analysis. Because of this, it is conceivable for applications whose code has

been modified to coexist in the integrated system with applications that can only be

accessed through file I/O. More specifics on how this will be achieved will be given in

the section on the distributed integration solution and in the section describing the

CASE Integration Toolkit in terms which relate directly to the distributed integration

solution.

Once information about the application has been extracted, the data which describe the

analyzed application are placed in the CAD/CAM CASE Workbench database. The

The CAD/CAM CASE Workbench 14

www.manaraa.com

CAD/CAM Integration
Toolkit

Integration Object
Analyzer

Distributed Integration
Solution

Integration Interface

CADRE

TEAMW ORK/SA/IM

Analysis Tool

Integration Interface

CADRE

TEAMWORK/SD

Design Tool

CADRE
C Source Builder

Programmer Toolkit

Interleaf Technical
Publishing
Software

CADRE
Integration Project

Support Environment
(IPSE)

CAD/CAM CASE W ORKBENCH

Figure 2: CAD/CAM CASE Workbench.

The CAD/CAM CASE Workbench

www.manaraa.com

types of data extracted are documented by Pennington [Penn91]. Research is underway

on the structuring and use of these data. At this point, the structured analysis and

design tools of the CASE workbench can be used independently or in conjunction with

other tools in the Integration Toolkit to design a final integrated system. In addition to

the Integration Object Analyzer, there are several other tools which together form the

Network Environment Integration System Enabler. The system enabler consists of data

flow diagrams, structure charts, and related source code, which will assist an

integration system designer in creating a complete distributed integration system. In

order to evaluate the tools in this toolkit, it is important to define the meaning of

integration as employed in the workbench.

3.2.1 Categories o f Integration

There are a number of techniques used to integrate applications into a cohesive

environment. These techniques can be generalized to fit into one of four categories

[Rowe88], [Penn91]:

1) Rigidly connected interfacing
2) Rigidly connected coupling
3) Freely connected interfacing
4) Freely connected coupling

The term interfacing implies indirect data communication among programs which rely

on an intermediate link to properly format the data. Coupling, in contrast, often

implies the use of a database as a means of sharing and exchanging data.

Rigidly connected applications are those which are coupled or interfaced in such a

manner that updates or additions to one or more of the applications mandate a

The CAD/CAM CASE Workbench 16

www.manaraa.com

reworking of the other applications in the connected system. As an example of rigidly

connected interfacing, consider a pair of applications where one application has been

modified or designed to produce an output file in the form of the input file expected by

the second application. Applications which employ rigidly connected coupling may

appear to the user a single application, where desirable aspects of the applications have

been extracted from their original location and restructured to work in unison. This

method would require a common data structure to be used among the different

components, in addition to being difficult to achieve.

Freely connected applications are those which are interfaced or coupled in a way which

is independent of the process by which they were developed. In other words,

applications can be independently added to or deleted from a system without affecting

the structure of other applications in the system. An example of a freely connected

interface is a neutral file format such as IGES or PDES. Freely connected coupling, on

the other hand, allows applications to share data via a common database. For

communication to occur, some sort of database management system is necessitated.

This means that the applications themselves need to be modified in order to send and

retrieve information from the database and its manager.

As was ascertained in the literature review, Pennington's industrial survey [Penn91]

indicated that there is no consensus of the exact meaning of the term "integration".

Because of this ambiguity, criteria for the CAD/CAM CASE Workbench were

established to include the potential of generating an integrated system using any of the

aforementioned integration schemes. The selection of the appropriate scheme is to be

left to the integration system designer, based on the structure of the applications to be

integrated and the desired end result. In an effort to facilitate the task of an integration

The CAD/CAM CASE Workbench 17

www.manaraa.com

system designer, this research presents a distributed integration solution, employed by

the CASE Integration Toolkit, which enable an integration system designer to develop

systems which utilize rigidly connected interfacing, freely connected interfacing, or

freely connected coupling. Although rigidly connected coupling is not specifically

addressed by the distributed integration solution, the use of the analyzer in conjunction

with the structured analysis and structured design tools of Teamwork will facilitate the

creation of an integration based on this philosophy. Any of the other three integration

methods can also be employed by using the Integration Object Analyzer and the CASE

tools. The end product, the complete integrated system, will reside in one operating

system immediately after creation. Various components can then be ported to other

platforms, if desired.

The CAD/CAM CASE Workbench 18

www.manaraa.com

4.0 THE DISTRIBUTED INTEGRATION SOLUTION

The term "distributed integration solution” implies an integration solution conceived for

use in a distributed environment. A key goal of the distributed integration solution is

to create a mechanism for integration which will be valid in a network environment, as

well as one which will lend itself to development into a set of CASE tools based on the

same distributed integration solution.

The requirements of the distributed integration solution are:

- possible database access and storage of pertinent CAD data
- inter-application communication
- applications running in a distributed and simultaneous environment
- functional access of other applications in the integrated environment without

terminating the session on the current application
- transfer of data among applications via database and interclient communications
- a system executive which oversees and manages interclient and database

interactions

It is necessary to clarify a few terms used in the requirements stated above. The system

executive which will oversee interclient and database communications will be called the

integration server. It will be described in detail as the discussion progresses.

Furthermore, interclient refers to the data exchange among the applications in an

integrated system.

Using the requirements above as a starting point, several approaches to the problem of

interprocess communication were considered as a basis for the distributed integration

solution. One way of enabling two applications to communicate over a network is by

using the X Protocol. The X Protocol runs above any lower-level network protocol

The Distributed Integration Solution 19

www.manaraa.com

that provides bidirectional communication and can deliver unduplicated, sequential

bytes of data [Nye90]. X provides a predefined set of queries and responses between

two processes. Interprocess communication in X is effected using a mechanism called

a selection. Selections allow communication between two clients on the same X server.

The X server acts as an intermediary between user programs and the resources of the

local system such as: the screen, keyboard, and mouse. It contains all device-specific

code and insulates the applications from differences between display hardware. The

applications in this scenario are clients of the X server. For the purposes of the

distributed integration solution, the function of the server needed to be different than

that of the X server. Instead of managing workstation resources, a server in the

distributed integration solution needed to manage the exchange of data between

applications. It may be possible to write an extension to the X server so that it is

capable of managing interprocess communications, however, a disadvantage of this

would be a reduction in efficiency if the server has to handle the management of the

windowing system as well.

Another option would be to use the Remote Procedure Call (RPC) protocol which

provides the same high-level communications which are used by the operating system.

The RPC protocol utilizes the external Data Representation (XDR) protocol which

standardizes the representation of data passed in remote communications. In effect,

XDR will compensate for differences in machine byte ordering. RPC relies on a

transport protocol such as Transmission Control Protocol/Internet Protocol (TCP/IP) or

User Datagram Protocol (UDP/IP) to carry messages between communicating

processes. A programmer can divide an application into a client side and a server side

and use RPC as the mechanism for communication between the two. The application

on the client side designates some procedures as remote, while the application on the

The Distributed Integration Solution 20

www.manaraa.com

server side implements those procedures and declares them as part of the server

[Come91]. When the client program executes one of the remote procedures, RPC

collects values for the arguments and sends them in the form of a message to the

server. RPC then awaits a response and returns values to the client. In this way,

communication between client and server is carried out through procedure calls. A

major disadvantage of the high-level RPC routines is that they are based on UDP/IP

which restricts the RPC calls to 8k bytes of data. This is restrictive when considering

the nature of data transactions for CAD/CAM applications.

Another possible mechanism for interprocess communications is the Network

Computing System (NCS). NCS enables the distribution of application processes

across resources in a network by maintaining databases that control information about

the resources [IBM90]. NCS is object-oriented in that the programs are cast in terms

of the objects they manipulate instead of the machines with which they communicate.

An RPC runtime library handles communications for NCS. In this environment, RPC

uses sockets for interprocess communications. NCS uses UDP/IP datagrams to send

messages between clients and servers. Datagrams are unreliable. TCP, on the other

hand, defines a reliable stream delivery that is useful for sending large volumes of data

from one computer to another. Using an unreliable system for volume transfers

requires programmers to build error detection and data recovery into their application

programs.

Sockets were chosen as the means for communication between the integration clients

and server due to their low-level flexibility and reliability when stream connections are

used above the Transmission Control Protocol/Internet Protocol (TCP/IP). The socket

abstraction is a product of Berkeley Software Distribution (BSD) and is essentially a

The Distributed Integration Solution 21

www.manaraa.com

low-level applications programming interface (API) for interprocess and network I/O

communications. It allows local or remote applications programs to set up a virtual

two-way communication path and exchange data. The socket inteiprocess

communication facilities reside on top of the network facilities; thus the

communications are based on a reliable stream connection provided by TCP/IP.

Sockets are basically file descriptors to which apply read, write, send, and receive

subroutines. Just as programs open files when free access is required, application

programs using BSD request the operating system to create a socket when one is

needed. The system returns an integer value which the program will use to access the

socket. Sockets can be created to work in one of two domains, UNIX or Internet. A

socket which communicates in the UNIX domain can only interface with sockets on its

host machine, while an Internet socket can communicate with sockets on its host as

well as on foreign hosts. Internet is the term used to describe the technology which

interconnects physical networks and makes them function as a unit. This technology

hides the details of network hardware and permits machines to communicate

independently of their physical network connections. Although the choice of sockets as

a mechanism for communication is operating-system dependent, recent incorporation of

sockets in systems other than UNIX, such as IBM's VM and MVS, allow the latitude

necessary for this type of solution.

Other requirements used in the design of the distributed integration solution, including

the ones mentioned above, are delineated as follows:

1) The distributed integration solution should be valid in a network environment.
2) Compatibility with the X-Window System is desired.
3) The emphasis is on interactive CAD/CAM applications.
4) There is a possibility of database support of the integrated system.

The Distributed Integration Solution 22

www.manaraa.com

5) Source code for applications should not be a requirement.
6) The distributed integration solution is valid for 3 types of integration : rigidly-

connected interfacing, freely-connected interfacing, and freely-connected
coupling.

The distributed integration solution created as a result of this research is based on the

definition of an "integration client/server" model. Given the constraint that the model

for integration must be valid in a network environment, a client/server relationship

seems well suited to the task. In this arrangement, the integration clients are actually

the CAD/CAM applications programs with a socket-based interface to the server

(AP/SOCK Interface) and a graphical interface to the user (GRIM widget) appended to

it. It is important to note at this time that in the discussion which follows "application"

refers to the CAD/CAM applications program while "client" refers to the application in

the context of the integrated system. In other words, the term client implies the

CAD/CAM application, the AP/SOCK Interface, and the GRIM widget as a unit. The

integration clients and server communicate using sockets as a mechanism for data

exchange. This configuration is shown in Figure 3. Note that clients on different

workstations can communicate with the server which resides on a separate machine.

The integration server is the administrator of the integrated system, meaning that it is

the server's job to determine which applications are currently connected to the system

and to enable users to interact with those applications by specifying data exchanges.

The server is also an intermediary through which all data, including requests, bound for

applications in the integrated system must pass. The mechanism in the server which

acts to convey model data is the transfer function. Each application in the system has a

corresponding transfer function at the server which accepts model data from it and

translates, transforms, or relays that data to another application in the system.

The Distributed Integration Solution 23

www.manaraa.com

WORKSTATION A WORKSTATION C

EVENT ia to te
HANDLER

a n ra c in o lu EVENT
HANDLER

COMMON
BUFFER

INTERFACE

CAD
APPLICATION

A

CAD
APPLICATION

B

LISTENING
SOCKET INTEGRATION

SERVER WORKSTATION B
TRANSFER

FUNCTIONS

ERROR
HANDLING

DBMS

DATABASE

MAINFRAME

Figure 3: Integration client/server relationship.

The Distributed Integration Solution

www.manaraa.com

The requirement for compatibility with a windowing environment goes hand-in-hand

with the emphasis on interactive applications. The distributed integration solution is

designed to handle applications in a network environment, but the possibility exists that

two applications could reside on the same workstation. If the applications are of an

interactive nature, two applications co-existing on one workstation necessitate a

windowing environment. The X-Window System was prescribed since it is the most

reliable and well-known of such systems to date. Interactive applications are not the

only type which can be handled by this distributed integration solution. In fact,

programs which run in batch mode are a simpler case than their interactive

counterparts, since they automatically guide input data through the program and

produce a delined output. In addition, a Motif widget interface was selected as the

means by which individual integration clients interact with the user. Motif is a

graphical user interface based on the X-Window System. The Motif toolkit sits above

the Xtlntrinsics toolkit which is part of X-Windows. Figure 4 shows how each of these

elements is related to the others. A Motif widget is an object which provides a user-

interface abstraction, in other words it combines scrollbar widgets, list widgets, button

widgets, etc. to create a custom user interface. Motif was chosen for interface

development because it has a consistent look and feel and because it is a toolkit which

accompanies the X-Windows software, which has been chosen as a requirement for the

integrated system. Since Motif is included in the X-Windows software, there is no

need to mandate extra software whose sole purpose would be to provide an interface.

As can be seen in Figure 3, the proposed integration system will consist of integration

clients and servers in a networked workstation environment, with the possibility of a

common database used to store and transfer data. Note that this is not the same

The Distributed Integration Solution 25

www.manaraa.com

MOTIF TOOLKIT
LEVEL

XT INTRINSICS

X LIBRARY
NETWORK

-------------------------- LEVEL
INTER-PROCESS
COMMUNICATIONS LIBRARY

Figure 4: Motif toolkit above Xtlntrinsics above X.

The Distributed Integration Solution

www.manaraa.com

database that was discussed in the context of the CAD/CAM CASE Workbench. The

database is an optional member of the integrated system, since the integration server

can function as an intermediate link in the process of data exchange between client

applications. The most likely location for the database is a mainframe environment,

though a workstation platform would also be suitable. The mainframe specification

was made because of the need in industry for a reliable, secure means for storing

proprietary data. This is a reasonable assumption considering IBM's recent

announcement of software that will transform its mainframe computers into massive

database servers. The software is currently geared toward PC access, but this

announcement shows the trend toward the use of mainframe computers as information

warehouses [Pall91]. In the distributed integration solution, the database will most

likely be used for data storage and retrieval. The database will communicate with the

integration server in a manner similar to that of the integration clients, employing a

database manager for data access. Both IBM VM and MVS mainframe environments

support the socket abstraction, although asynchronous functionality is difficult to

implement. In any case, it is not necessary for the database to utilize an asynchronous

socket, since blocking sockets would not have an adverse effect on the performance of

the database or on the other components of the integrated system.

Within the integrated system, applications with and without source code can coexist. In

the case where application source code is available, the integration system designer can

utilize the analyzer present in the Integration Toolkit to extract specifics about input

and output capabilities of the application as well as data structure. The source can be

modified, or more simply, modules that the application would normally use to extract

data for display can be called by the client modules which interface with the integration

server. This allows the integration system designer to exploit any internal databases or

The Distributed Integration Solution 27

www.manaraa.com

data structures that the application may utilize. In general, source code should not need

major modification. If source is not available, the application must be able to produce

output files and read input files. If a proprietary interface is available, a layer between

the client interface with the server and the application can be built to facilitate data

exchange into and from a common storage area between the two interfaces. This

concept is illustrated in Figure 5.

The distributed integration solution must be capable of supporting three types of

integration. One way in which the distributed integration solution can be implemented

is by creating a freely connected interface. In this type of system, the integration

clients send data in their own format to an integration server. At the server, the

receiving client is determined and the data is translated or transformed into a format

compatible with its data structures. The data is then sent to the receiving client where

they are displayed, analyzed, or stored. If a database is added to the scheme, as was

proposed earlier in this section, a freely connected coupled relationship develops

between the applications which access the database via instructions to the server. As an

example of rigidly connected interfacing, consider an application which can only

receive data in the form of a strictly defined input file. In a normal system, any other

application wishing to communicate with the input-restricted application would have to

modify its output to be structured like the input file. In the system based on the

distributed integration solution, the applications send their data, as they produce it, to

the server where it is reformatted to produce an input file of the type expected. An in-

depth description of the integration client, the integration server, and the

communication protocol used in the distributed integration solution follows.

The Distributed Integration Solution 28

www.manaraa.com

r

GRIM
WIDGET

r

CAD
APPLICATION

INTEGRATION
SERVER

AP/SOCK
INTERFACE

WORKSTATION AL

WORKSTATION B

figure 5: Client AP/SOCK connected to application by proprietary interface.

The Distributed Integration Solution

www.manaraa.com

4.1 The Integration Client

In the following discussion, emphasis is on applications such as CAD, CAE or CAM.

For simplicity they are referred to as CAD applications. The integration client consists

of three elements: a CAD application, an AP/SOCK (Application/Socket) Interface,

and a GRIM (GRaphical Interface Manager) widget. This configuration is shown in

Figure 3. The relationship of these elements to one another and to the integrated

system will now be discussed.

The AP/SOCK Interface acts as a front end to the CAD application in the integrated

system. One of its purposes is to invoke the CAD application after the AP/SOCK has

initialized sockets for communication with the GRIM widget and the integration server.

The combination of the AP/SOCK and CAD application (excluding the GRIM widget)

will, from now on, be referred to as the client application. The AP/SOCK and the

CAD application communicate via a common buffer. During development of an

integration client, the integration system designer defines a common buffer area

through which the CAD application and the AP/SOCK Interface interact. The analyzer

contained in the CASE Integration Toolkit aids the integration system designer in

locating code related to important data for inclusion in common buffer storage. More

discussion on how this is achieved will soon follow. Though the current trend is to

develop CAD applications using the C programming language, there exist a large

number of applications still on the market which were written in either FORTRAN or

Pascal. Since the AP/SOCK Interface is C based, the problem of compatible data

buffer areas for programs written in Pascal and FORTRAN must be addressed. Pascal

allows pointers to memory locations. Therefore, a link between the interface and a

Pascal-based application need only exchange a pointer location representing a common

The Distributed Integration Solution 30

www.manaraa.com

data buffer. FORTRAN, on the other hand, presents more of a challenge, since it

hides memory manipulations from the user. In this case, several arrays containing

integer and real variables will be sent as arguments to the application program from the

interface. This is a feasible solution since FORTRAN treats arguments passed into a

subroutine as pointers. The mixing of languages presents few problems in a UNIX

environment.

The AP/SOCK and the GRIM widget are connected by a socket link which enables the

two processes to run in parallel and communicate only when user action at the widget is

detected. Because they run separately, the CAD application is able to execute

independently. Similarly, the GRIM widget, which is event driven in nature, can use

its own management system to poll for incoming events. Motif widgets are essentially

event driven, meaning they await events generated by users, then act on these events.

There is a way for a widget to break out of the event loop, but this procedure is

effective only if the process executed after the break takes less than a few seconds to

complete. This being true, there is no effective way of combining the GRIM widget

with the CAD application without a major overhaul of the application's source code. It

is much more desirable to separate the two components and have them run in parallel,

communicating only when user interaction is detected by the widget.

It is important to note at this point that all data, (which can be in the form of a message

or actual information) which originate from any of the three components of the

integration client and which are bound for the server, are sent to the integration server

on the socket controlled by the AP/SOCK interface. This concept is illustrated by

Figure 6. This figure shows choice data generating a request at the GRIM which is

transmitted to the AP/SOCK Interface. Either this request or data compiled in response

The Distributed Integration Solution 31

www.manaraa.com

USER CHOICE
DATA

GRIM
WIDGET

AP/SOCK
INTERFACE

REQUEST
DATA OR INTEGRATION

SERVER

DATA
COMMON
DATA
STORAGE

CAD
APPLICATION

Figure 6: Client data routed through AP/SOCK Interface.

The Distributed Integration Solution

www.manaraa.com

to a different request can be sent to the integration server. The main purpose of the

AP/SOCK Interface is to act as an intermediary between the application program and

the integration server, and the GRIM widget and the integration server.

4.1.1 AP/SOCK Interface

The first task of the AP/SOCK interface is to create an asynchronous Internet socket

for communication with the integration server. Internet sockets are able to

communicate with sockets based on a foreign host that are connected by an Internet

network. Next, the interface creates an asynchronous UNIX socket for communication

with the GRIM widget. UNIX sockets are valid for communication on the same

workstation. This means that the client application and the GRIM widget, though in

separate windows, appear on the same workstation. If the CAD application is run in

batch mode with no graphics, the only interface displayed to the user will be the client

application's corresponding GRIM widget. When both sockets exist, the AP/SOCK

sends connection requests to the integration server and GRIM. The client socket

interface will wait to proceed until both connections have been accepted.

With connections established, the interface invokes the CAD application and passes it

any variables that have been declared as common. It may not be necessary to send

arguments if the application is C based. In this case, a "global extern" statement will

work. But, as previously discussed, Pascal- and FORTRAN-based programs will

require an argument list. By declaring variables from the CAD application in the

AP/SOCK, the common data buffer is established. It is necessary to access the

application source code and delete initializations of these variables since the CAD

application is no longer the controlling program. After invoking the CAD application,

the interface sends a request to the server for a list of clients currently active in the

The Distributed Integration Solution 33

www.manaraa.com

integrated system, from which its client application can request data. This list, when

received, is relayed to the GRIM for display as user choices.

Because asynchronous sockets were created, an event handler must be established to

check for incoming signals, without interrupting execution of the CAD application.

The nature of asynchronous sockets is to allow the CAD application to be manipulated

by the user until a signal is detected on one of the sockets. Once a signal occurs, the

application is suspended and the signal is evaluated to determine on which socket it

occurred and what it contains.

4 J .2 The CAD Application

The CAD applications discussed in this section are interactive in nature. One must

bear in mind that batch programs are a simplified case since they require defined inputs

and outputs. There are two cases to consider: application source code is available and

application source code is not available. The former is the case considered in this

research for the creation of a prototypical system, since it tends to be the more complex

of the two.

In the case where application source code is available, the integration system designer

analyzes the contents of the application in the early stages of integration system design.

Based on the information extracted with the analyzer, the designer can define data

structures for transfer to other application clients within the integrated system. This

information is also used to establish a common data buffer which links the client socket

interface (AP/SOCK) with the CAD application. It is through this common data buffer

that the two components (interface and application) communicate. For example, when

there is incoming data which must be taken from the socket by the AP/SOCK Interface

The Distributed Integration Solution 34

www.manaraa.com

and stored in an area to which the application program has access, it is the common

data buffer which receives this information. Recall that one of the assumptions made in

this research is that the CAD applications are of an interactive nature. This means that

in order to transfer the data sent by another application to the desired module within the

receiving CAD application, user interaction is a necessity. For instance, wing data

may be requested by a CAD aircraft design application that performs finite element

analysis. When the data are received by this application, they could be in a module

which only displays the geometry and does not analyze it. To proceed to the correct

module, the user must interactively select menus until the desired analysis section is

reached. It is not logical to automate the process of data placement within an

interactive application, because that would be contrary to the nature of the application.

Application programs which run in batch mode can also be treated under the distributed

integration solution, since they need data passed directly into a receiving module, and

so no further manual interaction is necessary.

If source code for the application is not available, there must be a way to characterize

the output and input files so the Integration Object Analyzer, contained in the CASE

Integration Toolkit, can be tailored to filter important information regarding the output

file for use in the integrated system. This means that the analyzer must be capable of

accepting information from an integration system designer about the format of the

output file in question. The analyzer can then characterize the contents of the Hie and

allow for its incorporation into the integrated system. For instance, the integration

system designer can input data to the analyzer which, in turn, describes the kinds of

data which will occur in a targeted input or output file. He basically specifies data

types and format constraints for the file and then uses the analyzer to determine exactly

what each input or output file of that type contains. Furthermore, applications which

The Distributed Integration Solution 35

www.manaraa.com

lack source code must be able to accept input in the form of an input file, or must

employ a proprietary interface as a means or receiving data from an exterior source. In

either case, the format of the input file, or the mechanism used by the proprietary

interface to receive data must be known in order for the appropriate transfer function to

handle data in the integration server. An application without source code is

incorporated into the integrated system by encompassing the application with the

AP/SOCK Interface as usual; however, the event handler must be structured in a

slightly different manner. The event handler will be responsible for extracting data

from and passing data to these applications using output and input files. For example,

when data is received by the interface which is destined for the application, the

interface constructs an input file and then, if necessary, invokes the application so that

the file can be read. If the application does not need to be restarted in order to read the

input file, a message will appear in the application's GRIM widget instructing the user

to manually take steps to read in an input file of the given name. When an application

in the integrated system requests information from the sourceless application, the client

application's widget once again instructs the user to manually create a named output

file containing the current model displayed and gives it a specific filename. When the

file has been created, the user informs the widget by selecting a proceed button which

alerts the handler to send the file to the server for transfer to the requesting application.

The steps previously outlined will, of course, depend on the integration system

designer's implementation and the structure of the CAD application.

4.1.3 The GRIM Widset

The GRIM is a Motif widget-based user interface. Given that Motif interfaces are

essentially event driven, widgets await events generated by users, then act on them. In

an event driven application, the user is in charge since the application is always waiting

The Distributed Integration Solution 36

www.manaraa.com

to react to a user command. A function called XtMainLoop checks for user input and

work procedures. Work procedures are instructions for the main event loop to branch

from event checking and perform a specified function when no user input is detected.

This basically means that work procedures can only be executed if user input is not

coming in with great frequency, otherwise the event queue gets priority. Another

concept that is key to the understanding of widgets is the callback function. Callback

functions are associated with widgets (for example, a pushbutton widget) when it is

created. This enables an action to be ascribed to the widget (for example, quit program

when pushbutton activated). If a widget is meant to do something, it has a callback

which is invoked when the widget is activated.

The GRIM widget runs in parallel with the client application (AP/SOCK interface and

CAD application). It is connected to the AP/SOCK of its owning client application by

a socket, so that communication can occur when user interaction at the widget is

detected. The term "owning application" implies the application for which the GRIM

provides an interface. The socket connection between the two interfaces allows the

application to proceed without having to manage an external interface for data exchange

in the integrated system. This configuration makes it possible to display a user

interface for the client even when application source code is not available for

modification. The key concept is that there is independence of the user interface with

the integrated system and the CAD application. Because they run in parallel, the CAD

application and the GRIM widget will be contained in separate windows on the

workstation. Remember that they will both be on the same machine since the GRIM

and the client application are connected by UNIX sockets. The GRIM widgets window

is not in any way attached to the client application's window, and therefore it is

necessary to indicate that the GRIM widget belongs to a specific client application.

The Distributed Integration Solution 37

www.manaraa.com

This is done by having the widget display the name of its owning application above the

selection list which contains client names for data requests.

The GRIM widget is basically a generic entity in the integration system. This means

that all GRIM widgets have identical code structure and content, with the exception of

the pathname used to define its UNIX socket file. This pathname must be unique for

every GRIM in the integrated system and must be known by the owning client

application so that communication can take place.

The GRIM widget is similar to the integration server in that it uses a listening socket to

detect connection requests. However, unlike the integration server, the GRIM only

expects one client, its owning client application, to attempt to connect to it. When the

client application does request connection, the GRIM accepts and requests the owning

application's name for display in the widget. Using Figure 7 as a guide, we will now

explain what makes up a basic GRIM widget. The idea behind the creation of this

widget is, first, to establish a main window widget which will house other widget

types. To the main window we add a menu bar widget which allows us to place menu

choices in a menu bar format. The item of this type present in the figure is labelled

ACTION. When selected, ACTION allows the user to reset the widget toggles or to

exit and destroy the widget.

Once the menu bar has been completely defined, a selection box is added to the main

window widget. The selection box includes two sub-widgets: the selection list widget,

and the selection dialog widget. The selection list will contain the names of the clients

connected to the integrated system from which the widget's owner (owning client

The Distributed Integration Solution 38

www.manaraa.com

Actions
Reset
ExitMain window

widget Name of owning
client application

Exchange Selection For My Client Name

Application A
Application E

Selection list

Names of
applications
from whom data
can be requested

Selection box
widget

□ REQUEST BUFFER DATA FROM CLIE

□ CLIENT ATTRIBUTE LISTING

■ ACTIVATE EXCHANGE
Framed form
widget with three
radio toggles

Current Exchange Selection

Motif window
borderSelection

dialog widget

Figure 7: Basic GRIM widget.

The Distributed Integration Solution

www.manaraa.com

application) can request data. Until a client has connected to the GRIM, this list

remains empty. This is because the GRIM has no way to access the integration server

to request the list until the client's AP/SOCK intervenes. The selection dialog is shown

at the bottom of the widget.

A form widget is then added to the selection box widget. The form widget is enclosed

by a frame and three radio toggle buttons are created for it. These toggles are defined

as:

1) Request Buffer Data From Client
2) Client Attribute List
3) Activate Exchange

Each toggle has a callback associated with it. The activate exchange toggle, as seen in

Figure 7, is initially greyed out until enough information (request for buffer and

responding application's name) has been gathered to effect an exchange. When it is

selected, it will display an information panel with the name of the application who will

respond to the request. At this time, the user has the option of proceeding with the

request or canceling it.

Although there are three toggle buttons, they represent two possible actions:

1) need current buffer data from a client in the integrated system
2) need some component of data from a client in the integrated system (an example

would be to request only the wings from an aircraft model)

To request buffer data is to request that the model or data currently displayed by a

client application in the integrated system be transferred to the requesting client. If

The Distributed Integration Solution 40

www.manaraa.com

only a component of that data is desired, a client must first request that the client

application with the desired data supply a client attribute list.

For applications in the integrated system that are able to supply data to other

applications, a client attribute list is needed. The client attribute list (CAL), or simply

attribute list, is a list which delineates the kinds of data which can be extracted from the

application. The attributes are a component-like list describing the kinds of data which

are representative of the current model. For instance, if the current model in an

application represents an aircraft, the attribute list could supply separate components as

options. The list is employed to give the user the option of extracting specific data

from a model, instead of requesting the entire set.

During creation of the GRIM widget, each button, list, etc., is associated with a

callback function. This means that if an event is detected at that widget element, a

callback function corresponding to the action is invoked. The callback defines the

action to be performed based on the event.

After the GRIM widget has been created and realized, the XtMainLoop takes control

and checks the work procedure when no events are queued. The work procedure used

by the GRIM allows the socket functions to be checked and processed. The function

used to check for socket activity is a BSD socket subroutine called select. Keep in

mind that sockets are basically file descriptors which correspond to a process instead of

a file. The select subroutine checks the specified socket descriptors to see if they are

ready for receiving, sending, or if an exceptional condition is pending. The select

procedure allows a server (in this case the GRIM widget interface) to interrupt an

activity (polling for events), check for incoming data, and then continue processing the

The Distributed Integration Solution 41

www.manaraa.com

activity. In this respect the GRIM acts as a server where its only client is the owning

client application. Another difference between the GRIM "server" and the integration

server is that the GRIM functions in the UNIX domain instead of the Internet domain

as the integration server does. This means that socket connection is described by a

pathname instead of a port number. It does, however, use a listening socket which

assigns a new socket descriptor to the client application which requested connection.

It has been established that the GRIM and the client application (AP/SOCK interface

and the CAD application) must work together, but run independently of one another.

In order to reduce the complexity of starting several processes, a script is used to start

the client. The script starts the GRIM widget as a background process, sleeps (waits)

for three seconds, then starts the client application. Background processes do not need

a shell in which to run. By running the GRIM as in the background, only one shell is

needed for the client instead of two (one for the client application and one for the

GRIM). The sleep is necessary because the GRIM widget needs sufficient time to

initialize and set up its listening socket before the client application attempts

connection. The following is an example of a script file created for this purpose:

widget_myclient &
sleep 3
mycl ien t

where widget_myclient is the executable for the widget, & makes it a background

process, sleep tells the system to wait three seconds before invoking my_client which

is the executable for the client application.

The Distributed Integration Solution 42

www.manaraa.com

4.2 The Integration Server

The integration server is the core of the integrated system; however, a user of the

integrated system could very well be ignorant of the fact that the integration server

exists. This is because the integration server is a background process which is

continuously running on the host workstation, allowing integration clients to connect

and disconnect. The server has a dedicated port number which corresponds to its

listening socket. This port number cannot be duplicated by any other process running

on the workstation. Only clients that recognize this number and the internet address of

the host machine can connect to the integration server. By concatenating the unique

internet address with the socket address (port number) an internet socket address is

produced, which enables clients to locate and utilize the server. As a guideline, port

numbers up to 255 are reserved for official Internet services. Port numbers 256-1023

are reserved for other common services. Some operating systems have additional

constraints on port numbers. For example, IBM workstations with the graPHIGS API

installed have socket ports reserved for the interprocess communications between the

graPHIGS shell and nucleus. The prototype that was developed in this research to test

the validity of the distributed integration solution uses an integration server with a port

number of 2000.

If the process for which a connection request was directed is listening at the well-

known port, it services the request and either uses that same port for the duration of the

connection (as does ftp - file transfer protocol), or creates a new port which is assigned

to the client process. By freeing the listening port in this way, the server process can

continue to accept connections from other client processes. Requests for connection are

handled so that multiple clients may access the integration server. As clients are

accepted for connection, the server adds the client's socket identifier to a data structure

The Distributed Integration Solution 43

www.manaraa.com

which allows descriptors to be cross-referenced with client name. Later this is how the

integration server will determine where to send data when only given the receiving

application's name.

The listening socket is a key element of the integration server. When first invoked, the

integration server sets up a socket which listens for incoming connections from

integration clients. These connection requests are directed through the AP/SOCK

Interface of an integration client during a client's initialization stage. When a

connection request is detected, the listening socket accepts the connection, thereby

creating a new and dedicated socket on which communication between the integration

client and the server takes place. The listening socket then returns to its task of waiting

for more incoming connections. This process is interrupted when a signal is detected

on one of the sockets dedicated to an integration client.

Once a connection has been established between sockets at the client and server

processes, the sending and receiving of data can occur. There are several ways in

which to accomplish this; the method chosen in the prototype is to use send and receive

subroutines supplied in the BSD libraries.

The integration server uses the select subroutine to check for activity on the sockets

managed by the server. When a signal arrives, the socket on which it occurred is

determined. If it occurred on the listening socket, this indicates a client request for

connection, and a new socket dedicated to that client is created. If the signal came in

on one of the other existing sockets (connected to integration clients), a block of data

called a header is read from the socket and evaluated. The header will be described in

more detail in the succeeding section on communications. In brief, the header contains

The Distributed Integration Solution 44

www.manaraa.com

a major and minor opcode (operation code) which combined give the integration server

enough information to locate the module which will evaluate the signal.

The integration server contains a library of transfer functions which are used to

transform or translate data from one application to the format of another. These

transfer functions are unique in that they must be specifically designed to handle the

order and type of data sent by one application and expected by another. Therefore, it is

conceivable that for every n applications in the integrated system there will be n

transfer functions designed to accept data from each application and n-1 sub-categories

to each transfer function. By sub-categories it is meant that based on the receiving

application, there is a switch statement in the transfer function which determines a

module which will reformat the data sent by the transmitting application. This process

is illustrated by Figure 8. It is feasible that a transfer function will have more than n-1

sub-categories. For instance, it may be necessary to take data from an application and

transform it into another coordinate system before returning it to the originating

application. This in essence would allow one to add external functions to an

application program, and store those functions at the server. Also, several formats may

be necessary for a single application in the system. All these variables are left to the

integration system designer to determine. These functions must be written, or

designed, in the CAD/CAM CASE Workbench for each set of applications in the

integrated system that wish to exchange data. Information obtained by the analyzer

about the applications is contained in the database of the workbench and can be utilized

to facilitate creation of the transfer functions.

The transfer functions make up a library which resides in the integration server. These

functions are used to translate or transform the data which is being transferred within

The Distributed Integration Solution 45

www.manaraa.com

data from
client A

Client A data
for Client B

Client A data
for Client C

Client A data
for Client (n)

X-form for B

X-form for C

X-form for (n)

Transfer Function - A

or

or

Figure 8: Sample transfer function.

The Distributed Integration Solution

www.manaraa.com

the integration system from one application to another. This is a very important step

considering the differences in data structure, ordering, and representation across CAD

applications However, in the event that no transformation or translation of the data

format is necessary (data structures in two applications are identical), the integration

server will simply apply a new opcode to the message containing the data, and relay it

to the second application.

The integration server's design allows it to remain as autonomous as possible,

establishing and terminating connections with integration clients in the system. This

autonomy allows clients to connect and disconnect without affecting the remaining

client applications in the integrated environment. Another benefit which stems from

this design is that the server can reside anywhere in the network, and is not obligated to

be on a specific machine. The only stipulation is that the clients know where the server

is located and use this information when they attempt to connect to the server using the

socket they have created for this purpose.

4.3 Communications

For effective communication between the integration client and server, messages sent

must be in a form which is predictable and meaningful. A protocol was developed to

facilitate the building and resolving of messages being passed in the integrated system.

Every message passed contains a data structure called a header which precedes all other

data. The header which contains the size of the succeeding message and major and

minor operation codes (opcodes) to allow for proper evaluation of successive messages

by the client or server.

The Distributed Integration Solution 47

www.manaraa.com

The header data structure is defined as containing the following information:

1) size_in_bytes: most often used to tell the receiving client how much data to
expect after the header. It can also be used to carry flags.

2) maj_opcode: operation code used to locate the major category of the message.
3) min_opcode: operation code used to locate the subordinate category of the

message.

The major opcode is an integer which denotes a category of message. The integer and

corresponding category follow:

0 Initialization
1 Request
2 Update/Data Transfer
3 Response
4 Error Message

Minor opcodes are used to locate, within the major category, the function or module

which will handle the incoming data. This process is discussed in more depth in the

section on the distributed integration solution prototype.

The Distributed Integration Solution 48

www.manaraa.com

5.0 STRUCTURED ANALYSIS AND STRUCTURED DESIGN

As a precursor to the discussion of the creation of CASE tools based on the distributed

integration solution, it is necessary to describe the processes of software development.

The steps which traditionally comprise the software development and life cycle are

shown in Figure 9. These five steps include:

1) Analysis and specification of requirements
2) Design
3) Implementation/Coding
4) Testing
5) Maintenance

In this section we will treat the issues of Requirements Analysis and Design as applied

to the distributed integration solution. The methodologies which correspond to those

used by the CASE tools employed in this research to aid in the completion of the tasks

above are structured analysis and structured design.

5.1 Structured Analysis and Requirements Specification

Structured analysis was developed by Edward Yourdon and Tom DeMarco to provide a

method for focusing on an application's data flow, rather than its control flow. The

goal is to produce a graphical structured specification of the application. For the

purposes of the distributed integration solution, a structured specification was created

using the following tools:

1) data flow diagrams: used during analysis to define the problem components and
the data transferred among them. It is a graphical depiction of the different data
items in a system and their movement.

Structured Analysis and Structured Design 49

www.manaraa.com

MAINTENANCE

ANALYSIS AND
SPECIFICATION
OF REQUIREMENTS

DESIGN

IMPLEMENTATION/
CODING TESTING

Figure 9: Software development life-cyde.

Structured Analysis and Structured Design

www.manaraa.com

2) data dictionary: a catalog of all data items found in the data flow diagrams.

3) process specifications: also called mini-specs they document data
transformations occurring in data flow diagrams. Decision tables, decision
trees, structured English, and pseudocode are all process specification
techniques.

The first step in the creation of the structured specification was the creation of a data

flow diagram for the entire integration system. Data flow diagrams offer a top-down

view of the system to be created from a data perspective. In a data flow diagram, data

elements flow from process node to process node, where they are transformed. There

is no notion of control flow. Because of this, data flow diagrams best depict a system

as viewed by the end user.

Data flow diagrams consist of four graphical components as shown in Figure 10. The

bottom-level process in a data flow diagram has a process specification associated with

it. The process specification describes the transformation of the data input to the

process into output. Another important element of the data flow diagram is the data

dictionary. Also shown in the figure are a few of the notations employed in the data

dictionary which are used to interpret the data flow diagrams. A data dictionary is a

reference of all the data elements found in a data flow diagram. All attributes of a

particular piece of data can be found in the data dictionary.

In summary, the important characteristics of the data flow diagram are:

1) graphical specifications of requirements
2) hierarchical and multi-level in nature
3) emphasis on data flow instead of control flow
4) specification of software requirements, not software design

Structured Analysis and Structured Design 51

www.manaraa.com

Data Dictionary Entry Operators

O perato r Exam ple Definition

+ a + b a together with b

[] [a/b] select either a or b

** *comment* comment

D ata Flow D iagram Components

Symbol Name

 > Data flows

Function

Data structures input to and
output from the process

O Process nodes Transform incoming data flows
to outgoing data flows

□ Data sources External originators and receivers
+ sinks o f data flows

Data stores Repositories which allow addition
and retrieval o f data

Figure 10: Components of a data flow diagram.

Structured Analysis and Structured Design

www.manaraa.com

5.2 Structured Pesign

Structured analysis and specification is a first step to the achievement of a structured

design. Structured design articulates a software system's internal architecture, while

structured analysis methodologies, such as data flow diagrams, emphasize a system's

external or user's view. It is a process whereby system requirements are transformed

into a plan for implementing the requirement. Figure 11 shows the process of

structured design as defined by Yourdon [Page88], Notice that structured analysis is a

necessary first step.

The CASE workbench aids in the transition from structured analysis to structured

design by supplying aids to transform analysis requirements into design specifications

for implementation. These design specifications are usually in the form of a structure

chart. The three steps used to create structure charts, as defined by Page-Jones,

[Page88] are:

1) Break the system into similar units using transaction analysis.
2) Convert each unit into a structure chart using transform analysis.
3) Construct an overall system implementation from the separate units.

Transaction analysis identifies the transaction types of a system and uses them as the

units of design. Transaction types are identified on the data flow model of the system

by studying the discrete event types that drive the system.

Transformation analysis is the strategy used to convert each unit of the data flow

diagram, which was isolated in the transaction analysis, into a structure chart. This

method consists of the following five steps:

Structured Analysis and Structured Design 53

www.manaraa.com

STEP I

. DRA!
DFD PROGRAM LEVEL

X dfd

STEP 22. ORAW
STRUCTURE
CHART HIGH-LEVEL

STRUCTURE CHARTS

STEP3
EVALUATE
DESIGN

COMPLETED
X STRUCTURE CHARTS

STEP 44. PREPARE I
DESIGN FOR \
IMPLEMENTATION

LOGICAL AND
PHYSICAL
PROGRAM
DESIGN

Figure 11: The Yourdon structured design process [Pbge88].

Structured Analysis and Structured Design 54

www.manaraa.com

1) Drawing a DFD (data flow diagram) of a transaction type.
2) Finding the central functions of the DFD.
3) Converting the DFD into a first draft of the structure chart.
4) Refining the DFD.
5) Verifying the structure chart with respect to the original DFD.

The process of transforming data flow diagrams representing transactions into structure

charts is not algorithmic. Instead, transform analysis is a strategy which produces a

rough draft of the system, requiring several iterations to perfect.

When completed, structure charts represent the software system in a hierarchical and

modular fashion. Data transactions between modules, called data couples, are

represented as well. In the figure which defines structured design according to

Yourdon, Steps 1 and 2 refer to requirements analysis and structured design. Step 3 is

designed to evaluate the quality of the design. This evaluation is made based on data

coupling and cohesion. Data coupling is a measure of the complexity of connections

between modules. In this respect, the simpler the connections, the better. Cohesion is

a measure of the strength of functional relationships within a module. Step 4 is an

iterative process whereby modules are divided until the lowest level can be used for

implementation of the design.

Structure charts show only the overall structure of a system, with very little procedural

detail. In order to enable the programmer to make the transition from structure chart to

actual code, some sort of procedural information must be given about each module.

There are two possible methods by which this can be accomplished:

1) module specifications (m-spec): give input and output expected from the module
and the function the module is expected to perform. No particular structural

Structured Analysis and Structured Design 55

www.manaraa.com

information pertaining to the code is necessarily specified, although the
possibility exists for actual source code to be placed in the m-spec, which is
then embedded in the source code of the system when complete.

2) specification bv pseudocode: specifies how the module should be programmed
by using an informal language similar to structured English.

Figure 12 shows a sample structure chart and defines commonly used notations.

Using module specifications, a system designer is able to incorporate implementation

specific details using C language syntax. Attributes which further describe these details

are then added to the data dictionary. The C Source Builder is then used to generate

the C-source code files from the structured design model (structure charts and module

specifications). The resulting source code is compiled and linked to produce an

executable system. The compile/link process is done outside of the CASE workbench

environment.

Structured Analysis and Structured Design 56

www.manaraa.com

Figure 12: An example showing structure chart components.

Structured Analysis and Structured Design 57

www.manaraa.com

6,0 INTEGRATION TOOLKIT

CASE tools are tools which leverage the requirements and design specifications phases

of the software development cycle, or that generate code. In this respect, the

Integration Toolkit is a CASE tool because it aids the integration system designer in

generating an integrated system.

The CASE workbench by CADRE is essentially converted into what is defined in this

research as the CAD/CAM CASE Workbench by using specific components of

Teamwork (the CADRE CASE product) in conjunction with the Integration Toolkit.

The Integration Toolkit will appear to the user as a part of Teaimvorfc because it will be

integrated into the generic CASE workbench using the integrated product support

environment (IPSE) supplied by CADRE. The following Teamwork components are

used in addition to the Integration Toolkit to form the CAD/CAM CASE Workbench:

Teamwor£/SA Based on Yourdon-DeMarco methodologies, this tool is an
editor for creating and editing data flow diagrams and mini­
specs (process specifications). It builds input and output lists
for every process node in the data flow diagram and allows
the developer to attach code to the individual process node
mini-specs. This tool aids the integration system designer in
the completion of the structured analysis and requirements
stage of the software development life-cycle.

Teamworfc/SD An implementation of the Yourdon-Constantine structured
design methodology. The structured design module provides
for the definition of software modules in a top-down
structured chart. It also builds input and output lists, based
on data couples, for each module in the structure chart.

Integration Toolkit 58

www.manaraa.com

Developers can incorporate code in each module's m-spec
(module specification) which is used by the source code
generator. This tool helps the integration system designer
complete the second stage of the software development life­
cycle.

TeamworMPSE The Integrated Product Support Environment (IPSE) is a tool
which serves as a framework into which other tools fit. It
enables tools and toolkits from various sources to be joined in
a common manner. Data sharing between components of the
workbench is enabled. The IPSE provides a common user
interface for tools.

C-Source Builder Using the models created during the structured design phase,
the C-Source Builder automatically generates C-based source
files. The source code generator constructs external (global)
and function definitions from information found in module
specifications. The system designer can chose to place
implementation details in the module specifications and data
dictionary to ensure complete code generation. In fact, it is
possible to place C code directly in the m-spec which will
later be embedded into the final product. Source code files
built by the C-Source Builder can be compiled and linked
upon completion. The source builder enables easy editing of
module specifications and data dictionaries, as well as the
ability to store source code for common or repeated use. This
tool leverages the third step in the software development life­
cycle; implementation and coding.

Figure 13 shows how the Integration Toolkit option appears within the Teamwork

framework. From the figure it is evident that the Integration Toolkit, as it appears to

the user, consists of the following menu selections:

Integration Toolkit 59

www.manaraa.com

/ * u lm < lm t l

Figure 13: Integration toolkit in CASE environment.

Integration Toolkit 60

www.manaraa.com

- Analyzer
- DFD Integration System
- Create GRIM
- Create Client
- Modify Integration Server
- Opcode Tables

The analyzer parses application source code and extracts information on data structure,

I/O capability, subroutines, etc. which are pertinent to the task of the integration

system designer. This information is stored in the workbench database.

The data flow diagrams represent the integration system as a whole and demonstrate

each component's role from a data perspective. These diagrams will be used by the

integration system designer to map the flow of any new data that he may need to add to

the system. A base set of diagrams is provided which defines the minimum data flow

in a valid system. Process specifications, or mini-specs, are produced for the lowest-

level process nodes in the data flow diagrams. These specifications describe how the

input data are transformed into output. A data dictionary defines the data elements

found in the data flow diagrams. It may also be used to store data definitions generated

as output from the analyzer. This aids the integration system designer in incorporating

application data into the data flow diagrams and structure charts.

For each of the menu selections designating a component of the integrated system, a set

of structure charts is provided which represents the base system. The term "base"

implies the minimum configuration of client and server which can be implemented

effectively. In order to expand the base system, the integration system designer will

Integration Toolkit 61

www.manaraa.com

need to add modules to the client which are specifically geared to interface with the

CAD application. Transfer functions corresponding to the client application will be

appended to the integration server. In effect, the integration system designer will add

modules and m-specs to the base diagram to tailor the system to fit the new applications

and his needs. Module specifications exist for each module in the integrated system.

In the case of the base system, they contain actual source code used in system creation.

Application specific modules are indicated in the m-specs and need to be tailored to the

function or application by the integration system designer. Such m-specs could contain

source code, pseudocode, or functional descriptions. The m-specs will be used in

conjunction with the C-Source Builder to generate compilable code.

Opcode tables are used by the integration system designer to trace the flow of data

through the integrated system based on the communication protocol header which

precedes all data. These tables are graphical representations of the method by which

the modules responsible for handling the incoming signal will determine which function

processes the signal. Functions are placed in the table to indicate their positions with

respect to header data. The table has columns representing the five major opcode

categories, and rows representing the minor opcodes. These tables will be used in the

following discussions to illustrate the communication mechanism in the integrated

system.

In the following sections, a description of the DFD's is followed by detailed

discussions of each component's structure charts. The structure charts and data flow

diagrams accessed in the Integration Toolkit will be accompanied by module

specifications (used for code generation), process specifications, and a data dictionary.

Integration Toolkit 62

www.manaraa.com

6.1 Data Flow Perspective of the Distributed Integration Solution

In order to describe the flow of information through the distributed integration system,

the product of the structured analysis phase of development, the data flow diagram,

will be used. Definitions of the data flows discussed in this section may be found in

the data dictionary included in Appendix A. The data circulating in the distributed

integration system is in actuality a request, response, or initialization information. It is

difficult to specify much of the data in any terms other than conceptual. For this

reason, actual data flow names may not translate directly to the structure chart

representations. Instead, the concept of the data flow is represented by using terms

descriptive of the data and its function in lieu of actual variable names.

The data flow diagrams developed for incorporation into the Integration Toolkit are

found in Appendix B. The process specifications which correspond to the lowest-level

process nodes in the DFD's are located in the same appendix following the diagram

they describe. There are several tools used to write process specifications. These

methods include structured English, decision tables, pre/post conditions, flowcharts,

etc. Many organizations tend to utilize only one tool to write process specifications.

According to Yourdon [Your89], the use of a single tool is a mistake. Instead, he

contends that a combination of the tools mentioned above should be used. The decision

of which tool to use is based on user preference, programmer preference, and the

idiosyncratic nature of the various processes. The process specifications located in

Appendix B use decision tables, structured English, and pre/post conditions to define

the process nodes of the data flow diagrams. The reader may find it helpful to refer to

the data dictionary and process specifications when deciphering the data flow diagrams.

Integration Toolkit 63

www.manaraa.com

We will now discuss a few of the data flow diagrams. In the course of describing the

diagrams, the analysis process which went into the design of the distributed integration

solution will be described. The first diagram one must consider is the context diagram,

shown in Figure 14. The context diagram is defined as the top-level of a hierarchical

set of data flow diagrams. It represents the entire system in terms of a single process,

shown as bubble 0. The diagram is used to delineate the scope of the analysis and

define the system in terms of inputs and outputs. The context diagram, in conjunction

with the data flow diagrams derived from it, enables the integration system designer to

identify the major transactions of a system in terms of inputs and outputs. In order to

determine a solution to the problem of integration of CAD/CAM applications in a

network environment, the scope of the system in terms of inputs and outputs must be

defined. The context diagram shown in Figure 14 demonstrates the external influences

on the integration system. The user is considered a terminator (an external source of

data input and/or output) because based on the presence of choices, he will make

decisions and transmit them to the integration system. In an effort to retain control of

data exchanges in the integration system, data requests are the only method by which to

effect data exchanges. This means that it is not possible to send data to a second

application in the integrated system unless it has been requested by a user at the second

application. This eliminates the possibility that a user could be creating a model at an

application and suddenly have it overwritten by data that has been sent into it from

another application. Furthermore, it does not make sense for a user to send data to

another application unless he will be using that data himself. Given this scenario, the

constraint that all data transactions must be requested from the application which will

receive the data is valid. In addition, Figure 14 shows the applications as terminators.

The applications are considered as external to the integration system; however, they do

interact with it by sending and receiving application data. By designing the

Integration Toolkit 64

www.manaraa.com

[■Ion

data from applicationdate from application
T fan T O P P iran ra r- oau_io_application

application 2

Uaar

Figure 14: Context Diagram of the integration system.

Integration Toolkit 65

www.manaraa.com

applications as external, it is easier to isolate applications from changes applied to other

applications in the integrated system. All necessary modifications will be made internal

to the integration system instead of to the application itself. It is important to mention

here that only two applications have been used in these diagrams in order to simplify

the data model. However, the rules developed for two applications can be extended to

cover n applications.

The next data flow diagram described is one level below the context diagram, data flow

diagram (DFD) 0. This diagram is shown in Figure IS. This diagram shows the

integration system broken down into the integration server and client interfaces to the

CAD/CAM applications. The integration server was designed such that the users of the

applications in the integrated system can be unaware of its function or existence. This

means that the integration server will be able to run as a background process on one of

the machines in the network, allowing clients to connect to and disconnect from the

server at any time. By hiding the integration server, instead of making the application

users responsible for initiating contact between the server and their applications, the

proper integration client/server relationship is retained. The client interfaces represent

the portion of the integration clients which will act as an interface between the

CAD/CAM application, the user, and the integration server. The interfaces and even

the integration server help to isolate the applications in the integration system from

modifications to applications with which they exchange data. The reason this isolation

is possible, is that transfer functions at the integration server can be updated to reflect

changes in data being sent from a modified application. On the other hand, if an

application is modified such that it needs to receive more or new types of data from a

second application already defined in the system, the second application must be

Integration Toolkit 66

www.manaraa.com

ch< lea data
ct oice data

iton dat i;iak>n data

data from rom_appllcatlondata_fr3tTKAppllcatlon

ClientInterface ClientInterfaceIntegratioiServer

|o_applicationdata ti iplfcation lata.

Figure 15: Data flow diagram of the integration server and clients - DFD 0.

Integration Toolkit 67

www.manaraa.com

modified at the interface level as well as modifying the transfer function. This still

minimizes the amount of change to applications in the overall system.

Figure 16 shows DFD 1, which represents the client interface in terms of the GRIM

(user interface to the integration system) and the socket interface (between application,

GRIM, and integration server). This diagram was developed under the assumption that

source code for the application is available. If the source code can be obtained, the

application can be modified to share a common buffer with the socket interface into

which data from and for the application are placed. The data which are sent to the

socket interface from the integration server can either be destined for the application,

the GRIM or the socket interface. Data destined for the application originated from

another application in the integration system (as a result of a request generated by the

user at the receiving application). The data have been transformed or translated by the

transfer functions of the integration server into a format acceptable to the socket

interface which receives the data and places them in the common buffer for access by

the application. Data destined for the GRIM, such as a list of clients in the system

from which data may be requested, are received by the socket interface and relayed to

the GRIM. The socket interface, often referred to as the AP/SOCK interface, and the

GRIM run in parallel and communicate over asynchronous sockets. This configuration

was chosen because the task of integrating a user interface to the integration system

directly into the CAD/CAM application would mandate the utilization of source code

and would be time consuming to effect. Instead, the approach of designing a generic

interface which will work will all applications regardless of source code availability

was taken. This means that the GRIM manages both user input and signal reception

from the AP/SOCK. By separating the GRIM and the client application (AP/SOCK

interface and CAD/CAM application), the application is able to execute without

Integration Toolkit 68

www.manaraa.com

dedaloa data

Idget
clioncommon

data

for cllantl
data .from
_apf [fcatfon

Socket
Interface
and Handler

rom c l la n t l

Figure 16: Data flow diagram oF the client interface - DFD 1.

Integration Toolkit 69

www.manaraa.com

managing the user interface. When a sequence of user interactions at the GRIM

triggers a request event, the GRIM sends a signal to the AP/SOCK interface. The

occurrence of a signal at the AP/SOCK will suspend the application's execution. Once

the signal has been evaluated and handled, for instance when the user request is

forwarded to the integration server for further evaluation, control returns to the

application at the point it was suspended. Data which are destined for the AP/SOCK

interface include requests for the applications name. Requests of this sort are generally

used by the integration server for management purposes. For example, the integration

server keeps a list of all client applications currently connected to the integration system

and is able to cross-reference application name with the socket descriptor which defines

the integration server/client communication path.

Figure 17 shows DFD 2.1 which describes how the integration server handles data

from a client in the integration system (in this case the client is called client 1). As was

mentioned above, the integration server is able to determine the socket descriptor at the

server which communicates with a client given the client's name. The server also sets

up a data structure containing exchange relations. This data structure is created during

the initialization of the integration server, and enables the server to determine which

clients can request data and which can send data. By using the relation data structure in

conjunction with the current list of connected clients, the integration server can issue a

list of clients from whom a newly connected client can request data. The relations file

is read at initialization of the server in order to avoid rereading the file every time a

new client requests connection with the server. Data sent to the server from a client in

the integrated system an be one of three types: data generated by the user at the GRIM

which needs to be forwarded to another client in the system, data necessary for

Integration Toolkit 7 0

www.manaraa.com

iffer dabr

lget_in_data
wldget_req\test_(orward_server

■ppNcaUatTnaiM.raquMt data bdm cllentl

AcceptConnection Evaluate Data by Headerjllon InitialDetermine Inll Request Type
»_app_out

BuildLiat
EvaluateDataType

lietjof_exclrange_appllcalions
data

itlned
DataDeallned for Widget Transform Data Into New Format

D̂etermine If New Socket or iCIoeed Sock*

Figure 17: Data flow diagram of the integration server - DFD 2.1.

Integration Toolkit 71

www.manaraa.com

connection or initialization the client, or data which must be treated by the integration

server. Figure 17 labels these data items as widget_request_forward_server,

initialize_client, and response_app_out, respectively. Data which needs attention from

the server includes data which must be sent to a transfer function in the server before

being sent to another client in the system, data which represents the termination of a

client in the system, or data which needs no treatment from the server and simply needs

to be relayed to another client in the system. These three types of data are shown in

Figure 17 as transfer_data, server destined, and relay_data, respectively. Before

sending data on to a second client in the integration system, the integration server

prepends a header to the data which will enable the message to be evaluated correctly.

The data flow diagrams discussed in this chapter have been used to describe the

analysis and requirements phases which were used to create a solution for integration in

a network environment. More detail on the data flow diagrams which describe the

system can be found in Appendix B.

6.2 The Distributed integration solution in Structure Charts

The structure charts, which an integration system designer will modify to produce an

integration system, have been split into the GRIM, the client application, and the

integration server. Since the GRIM and the client application run independently of one

another, they are developed separately. Hence they have separate structure charts and

menu items in the Integration Toolkit. A description of each set of charts is contained

in this section. The structure charts for each component and their module

specifications appear in Appendices C, D, and E. Appendix F contains, among other

things, the module specifications for commonly used utility routines. The utilities can

Integration Toolkit 72

www.manaraa.com

also be used by more than one component in the integrated system and are grouped

together for reuse. Appendix F also contains the header "mysock.h" which defines

common structures used in all components of the integration system. Such definitions

include the header and the socket structure. The following description of the structure

charts is more or less on a conceptual level. For details of implementation, it will be

necessary to read the m-specs for the set of structure charts described. The m-specs

contain actual C source code which will be used to build the integration system.

Comments interspersed throughout the m-specs will enable those persons interested in

implementation detail to understand the function of each module. Please note that

during the discussion of structure charts, module names are bold and data couples are

italicized.

6.2.1 GRIM Structure Cham

The GRIM widget is essentially a generic element of the integration system before a

client application connects to it and assumes ownership. This is one reason why a

separate group of structure charts has been created for the GRIM.

Every client application in the integrated system must have its own GRIM. The

method by which this is ensured is by defining identical pathnames, which correspond

to a unique UNIX socket identifier, in both the GRIM and client application. To do

this, the integration system designer must modify the top module in the client

application and several modules in the GRIM where pathname is defined. Modifying a

module implies that its module specification is edited or changed in some way. When

this has been done for the GRIM, its source code may be compiled and linked. The

GRIM executable should be given a unique name which allows it to be associated with

its owning client.

Integration Toolkit 73

www.manaraa.com

The Integration Toolkit essentially uses this method to produce a GRIM widget for a

given client application. Since only pathname needs to be modified, the module

specifications containing source code for the widget will need to be updated. The

resulting m-spec will be used in conjunction with the CADRE C-Source Builder to

produce the executable widget interface. Selection of the "Create GRIM" menu in the

Integration Toolkit will cause the display of an information panel with the following

message:

"In order to complete the task of creating a new GRaphical Interface Manager,
three m-spec (module specifications) objects must be updated:

1) GRIM
2) g_close_sock
3) g_make_widget

When you click OK, the m-specs for these modules will appear in three separate
windows [in the Teamwork environment]. You should correct the value of the
< pathname > constant in each of the three files. This will be the first line of
source code in each m-spec. After correcting this line [in each object], close
the object file and run the C-Source Builder to generate the C source for the
GRIM application."

If the integration system designer selects the OK button, three objects are opened in the

CADRE environment. Each of these object files needs the pathname definition edited.

After the new pathname has been added, the object is saved and exited. This process is

repeated (edit pathname, save and exit file) until all necessary files have been modified.

The C-Source Builder is then invoked to produce an executable with a unique name.

The client application is subsequently modified to accommodate a CAD/CAM

application which is targeted for integration into the system. When the client

application has been completed and an executable has been made, a UNIX script file is

Integration Toolkit 74

www.manaraa.com

used to invoke the GRIM and the client application in such a manner that they run

independently and cooperatively.

For the sake of completeness the GRIM structure charts have been included in the

Integration Toolkit. These GRIM structure charts and corresponding module

specifications can be located in Appendix C. A description of the structure charts and

their modules follows.

GRIM is the main module of the GRIM widget. Its first task is to open a socket on

which to listen for connection requests from the client application. In order to uniquely

define the socket in the UNIX domain, the pathname defined at the top of this module

must be modified. The resulting pathname must be known by the client application

which owns the widget in order for communication to occur. The socket, Sock, is

created as the listening socket and is known globally within the GRIM program.

The next module invoked from GRIM is called g make widget. This is the module

responsible for creating and displaying the basic widget which will be used in

conjunction with the client application. The basic GRIM widget is shown in Figure 7.

All code for the modules called from g_make_widget is included in the same m-spec.

Following the structure charts, we can see that the main window widget is created and

a menu bar widget is added to it. A pull-down menu called ACTION is established as

part of the menu bar. The creation of the reset and exit choices for the pull down is

shown in the module MakeMenuBar as CreateMenuButtons. The reset and exit

options have callback functions associated with them which define the required action

taken when either is selected by the user. It is necessary to note here that the callbacks

are drawn in the GRIM's structure charts as being invoked asynchronously. This is

Integration Toolkit 75

www.manaraa.com

because they could be called at any time based solely on user input. In the remaining

discussion, callback functions are not explicitly stated as being present. Instead the

description of a widget's action should imply that a callback is responsible for

executing that function when necessary.

As can be seen in MakeSelectionBox, the selection box contains several possible sub­

widgets, two of which are used here, as shown in Figure 7. They are the selection list

widget and a selection dialog. The selection dialog is not shown in the structure charts,

but it's puipose is to display the name of the last-chosen selection list item. Other

widgets normally used with the selection box widget are not necessary and are therefore

unmanaged. In MakeOtherStuff, a framed form widget containing three toggle

buttons is added to the selection box widget.

Once the basic widget has been created and realized, a work procedure is checked. A

work procedure forces XtMainLoop to branch to a function called g select loop when

there are no input events on the GRIM widget. The g_select_loop function enables the

GRIM to check for signals arriving from the client application. In order to do this, a

readjnask must be defined. The mask is essentially a filter which is set to contain all

socket descriptors on which the GRIM expects to receive signals. Before the client

application connects to the GRIM, the only socket descriptor in the mask is the

listening socket, Sock. Once connected, the client application's socket (defined at the

acceptance of the connection) is included in the readmask. The select function (from

the BSD socket library subroutines) checks all sockets in readjnask. If a signal is

detected, it modifies the readmask to contain only the socket descriptor on which the

signal occurred. If no signals are present, the work procedure returns control to

XtMainLoop.

Integration Toolkit 76

www.manaraa.com

If a signal is present, however, the readmask is passed to g_eval_sel. This module

determines on which socket the signal occurred by comparing the socket data structure

with the readmask. If the signal came in on the listening socket, the client application

is attempting to connect to the GRIM. In this case, the connection is accepted and a

message requesting the client application's name is sent. This process occurs only

during initialization of the GRIM. If the signal came in on the socket connected to the

client application, a header is read from the signal. If there is no data on the socket,

the signal was meant to indicate that the client application terminated. As a result, the

socket is closed and the widget self-terminates since the client it served is no longer

active in the integrated system. If there are header data on the socket, the header is

sent to g s w o p where it is resolved. In the GRIM structure charts, the term

readjsock refers to the socket on which the signal occurred. It is called read jo c k

because the data present on the socket must be read in order to determine its contents.

Table 1 illustrates how the header is resolved based on major and minor operation

codes contained in the header. A description of each module handling signal data

follows:

g add name A header with a major opcode of 0 and minor opcode of 0 is
handled by add_name. Add_name reads the name of the client
application from the socket and creates a motif-based string from
it. The string is then added to the widget to show the client to
which the widget is dedicated.

g_add_to_list This module builds the client selection list one item at a time.
The number of items in the list is sent in the size_in_bytes
portion of the header structure. All client names which comprise

Integration Toolkit 77

www.manaraa.com

Table 1: GRIM opcode table

major opcode
0

major opcode
1

major opcode
2

major opcode
3

major opcode
4

minor opcode
0 g_add_name g_jel_new jiit

minor opcode
1

minor opcode
2 g_add_to_li«t

minor opcode
3

g_m»ke_«ttrib
_li*t

Integration Toolkit

www.manaraa.com

the list are read from the socket and placed in the widget for
display.

g get new list This module uses the size_in_bytes portion of the header as a flag
to determine whether to add or delete a client from the selection
list. Based on the flag, the client name read from the socket is
added to or deleted from the existing selection list.

g_make_attrib_list This function is called when the list items of another client's
attribute list must be displayed. The name of the client who sent
the list is read. A bulletin board widget is then created which
will be appended to the selection box widget of the basic widget
created earlier.

The bulletin board widget displaying an attribute list is shown in Figure 18. As shown

in the figure, the new widget consists of an OK button, a cancel button, and a list of

attributes. By choosing a list item and the OK button, a request for that data item is

sent to the client from which the attribute list originated. Cancel will exit the bulletin

board.

6.2.2 Client Application Structure Charts

A base representation of a client application is contained in the Integration Toolkit.

This representation is in the form of structure charts and m-specs included in Appendix

D. There are several modules included in the client application structure charts which

are application specific. These modules have m-specs which declare the fact that the

module must be tailored to fit the CAD/CAM application into the integrated system.

For example, the module main ap is a CAD application which has been modified to be

subordinate to the ap_sock module. The m-spec corresponding to its module alerts the

Integration Toolkit 79

www.manaraa.com

Actions

Exchange Selection For My CUeat Name

| ^Application A
Application E

□ REQUEST BUFFER DATA FROM CL1E

■ CLIENT ATTRIBUTE

□ ACTIVATE EXCHAN

Current Exchange S

Bulletin board
widget containing
client attribute
list from
application A

\
- Client Attribute Li Jo

{ Cancel |

list item 1
list item 2
list item 3
list item 4
list item 5
list item 6
list item 7
list item 8
list item 9

/

Figure 18: GRIM widget displaying attribute list.

Integration Toolkit

www.manaraa.com

integration system designer to this fact. By identifying the modules where application

specific code must be inserted, the integration system designer can easily construct a

minimally configured integration system. In other words, more sophisticated data

exchanges and messages may be added to the clients and integration server once a

thorough understanding of the communication process and system architecture is

achieved. This is done by first identifying a data exchange transaction. The

integration system designer then designs a module located at the responding client

which will supply data, and a module located at the requesting client to receive data.

He then creates a transfer function for the integration server which will transform or

translate the data from the responder to the requester. The correct headers must be

constructed in each module that is sending data. Function names will then be placed in

the opcode table such that they will handle the data meant for them. An example of

such an opcode table, Table 1, was seen in the previous section. These tables are

graphical representations of the function used to determine which module to call based

on header information. Opcode tables are included in the Integration Toolkit to aid an

integration system designer in tracking the flow of data through the system.

An important element in client application modules is the use of two global variables:

ACTIVE WIDGET and ACTIVE_SERVER. Initially, they are set true when

connections to the GRIM widget and integration server are established. The variables

are changed to false if either the GRIM widget or the server terminates before the client

application. These indicators are checked before any data are sent to either server.

This avoids the occurrence of serious errors in the system. To describe the client

application as contained in the Integration Toolkit, we will use the client's structure

charts as a guide. As a reminder, module names appear in bold and data couples are

Integration Toolkit 81

www.manaraa.com

italicized. Also, the terms requester and responder, as used in several modules, refer

to the client initiating a data exchange and the client supplying data for the exchange.

Ap_sock is the main program of the client application portion of the integration client.

The first task it performs is the creation of two asynchronous sockets, Sock and Sock2.

The first is an Internet socket which will be used for communication with the

integration server. For this purpose, the port number and Internet address of the host

machine on which the server resides must be known. The second socket, Sock2, is

used by the client application for communication with its dedicated GRIM widget in the

UNIX domain. For this to be possible, the pathname of the socket file used must be

identical in the client application and GRIM. Once these sockets are created, the client

application issues connection requests until both sockets are accepted. After

connections have been established, the client application asks the server for a list of

clients from which he can request data. This list will be used to initialize the client's

GRIM widget selection list. Ap sock then invokes the CAD application. In order for

the AP/SOCK and the application to share vital information with one another (assuming

application source code is available), common data must be initialized in the ap_sock

module and passed to, or referenced in, the CAD application. All initializations of

common data elements must be deleted from the CAD application. In this manner, a

common data buffer is established.

Because the sockets used by the client application are asynchronous, an event handler is

created to check continuously for signals incoming on the sockets. This is done

without disrupting the execution of the CAD application. When a signal does arrive,

the CAD application is suspended until the signal has been "handled". When

Integration Toolkit 82

www.manaraa.com

processing of the signal has been completed, control is returned to the CAD application

which resumes at the point it left off.

The signal is detected in the handler by the select subroutine which sets readjnask to

include both active sockets. When a signal is detected, the readjnask is reset to

contain only the socket descriptor on which the signal occurred. This means that either

Sock (the server socket) or Sock2 (the GRIM socket) is the read sock sent to the

function cl rdmsg. Cl_rdmsg reads a header's worth of data from read_sock. If no

data are present, the signal indicates that the connected process has terminated. If there

are data, the header is read and sent to the function cl_swop. This module is

responsible for evaluating the header based on major and minor opcodes. Table 2

shows a graphical depiction of how modules are located based on the header opcodes.

send_name This module will send the application's name to the process
connected to the socket by the read_sock. The process could be
either the integration server or the GRIM widget since they both
need this information.

get cl list The module accepts the list of exchange clients from the
integration server. The list is then relayed to the client
application's GRIM widget for display. In this case, read_sock
represents the server socket (Sock) and write_sock the GRIM
socket (Sock2).

relay data request This function reads the name of the client
that will respond to the request (responder). The module then
builds a header which will direct the server to the module that
will handle the relay of this request for buffer data. The header,
responder, and requester (name of the client requesting the data)
are then sent to the integration server. In this scenario, the

Integration Toolkit 83

www.manaraa.com

Table 2: Client application opcode table

major opcode
0

major opcode
1

major opcode
2

major opcode
3

major opcode
4

minor opcode
0 iend_name update_widget

minor opcode
1

m]ay_dau
_mqueit receive_bufler

reipond_lo_
bufTcr_requeit

minor opcode
2 get_cljiat

minor opcode
3 reqjm ribJiM

relayjm rib
J i i t give_aurib jiit

minor opcode
4

req_from_

atlrib_liit
re*pond_attrib

J te m

Integration Toolkit

www.manaraa.com

read_sockrepresents the GRIM socket, since this is where
requests for buffer data originate. Write_sock corresponds to the
server socket.

req_attribjist The first step performed by the module is to build a header which
will direct the integration server to the function that will relay the
request for an attribute list to a client in the integrated system.
The name of that client is read as responder, and subsequently
the header, requester, and responder are sent to the server.
Again, read_sock is the GRIM socket and write_sock the server
socket.

req_from_attrib_list This function first builds and writes a header that will allow the
integration server to locate the module which will receive the
requested list item from an attribute list. This information is then
relayed back to the client which owns the attribute list. The
name of the client that will respond {responder) is read.
Subsequently, responder and requester (client requesting the
transaction) are written to the integration server. The list item
number, listjtum , is then read from the GRIM socket and written
to the server socket.

update_widget This module receives a name from the server along with a flag
carried in the sizejn_bytes field of the data header. This
information is passed onto the client application's GRIM widget
where the flag indicates whether to add or delete the name from
the selection list Gist of exchange clients).

The last five functions that will be discussed are all application specific.

receive_buffer This module is used to receive buffer data that were requested
from a client in the integrated system. The data structure of the
receiving CAD application will dictate the order and form with
which the data from the integration server are read. Once this

Integration Toolkit 85

www.manaraa.com

relay _attrib_list

respond_to_buffer

g iv e a ttr ib lis t

respond_attrib_item

information has been determined, it is then possible to design the
portion of the server module that will be sending these data to the
receiving client. It is important to remember that the order in
which the data are sent to a socket is the order in which they
must be read.

This function is dependent on the order and format with which
the requested attribute list is sent from the server. It is possible
that this could be a generic module with the number of list items
being variable, but the items themselves are text strings. In this
case, the example given in this module's m-spec can be used in
the base system as it appears.

This module supplies data in response to a request from a client
in the integrated system for its current buffer data. Again, the
data structure of the current model determines the form of the
message generated. The transfer function at the server which
receives this data must be aware of the order and form in which
these data are transmitted.

It is the task of this module to compile a list of data-related
attributes that other clients in the integrated system can ask to
see. This list can be dynamic in nature if it depends on the
current model for information.

This module produces the data which correspond to items on the
attribute list which this client has sent to other clients in the
integrated system (see give_attrib_list). Its first task will be to
read in the list item identifier and gather data which the list item
represents.

Integration Toolkit 86

www.manaraa.com

6.2.3 Integration Server Structure Charts

The server component of the integrated system is implemented in the Integration

Toolkit as a series of structure charts. These charts and the m-specs which describe

them are in Appendix E. The structure charts are composed of modules, each of which

have a corresponding module specification (m-spec) that contains actual C-source code

when possible. The only changes or additions to the integration server occur in the

module called resolveJieader which invokes transfer functions to treat incoming data

based on the major and minor opcodes contained in the signal header. This will be

explained in more detail as the discussion progresses.

Just as in the case of the client application structure charts, the minimum system

configuration can be achieved by filling in modules that are only stubs in the structure

chart. "Stub" means that no C-source code exists in the module specification because

the module is application specific and cannot be generalized. A minimum

configuration is one in which clients request data as defined in the data flow diagrams

described earlier. It is imaginable that information other than that defined in the data

flow diagrams needs to be passed in the system. The integration system designer can

modify the server and clients, using the Integration Toolkit and the CASE workbench,

to generate and receive these new data. The methodology used to do this was described

at the beginning of the previous section on client application structure charts.

The server is meant to run continuously as a background process with a well-known

port number, allowing clients to connect and disconnect at will. Client activity of this

sort does not have an adverse effect on the integrated system as a whole. The

integration server is also modular since functions can be added to the subroutine that

manages the transfer functions (resolve header). To get a sense of how the integration

Integration Toolkit 87

www.manaraa.com

server functions, a module-by-module description of the structure charts follows.

Please note that the data structure sock_struc contains the number of sockets currently

connected to the server, an array of those socket descriptors, and an array of client

names which correspond to the processes connected to each of the socket descriptors.

This data structure is defined in the include file mysock2.h which is located in

Appendix F.

Serv is the main module of the integration server. Its first task is to read the file which

contains a list of relationships between clients in the integrated system. In other words,

a list of clients who can send data and those who can request or receive it. For every

relation listed in this file, there must be a transfer function at the server that can handle

the exchange of data between those two clients. An example of file entries is shown in

Figure 19. The term "sender" in the relation file implies the application which can

generate data and "receiver" the application that can request and receive these data.

From the figure, we can deduce that client X can request data from client Y and vice

versa. However, the ACSYNT/B-Spline Toolkit data exchange is valid only in one

direction. Using information obtained from this file, a global data structure called

xchg_struct is filled. This data structure will be used to compile a list of exchange

clients for new clients in the system. It is also referenced when updating clients in the

integration system because a client process has terminated and can no longer supply

data. In the C source contained in the top-level integration server m-spec, the filename

of the relation file is defined as exchange_buds. This is the name of the file used in the

prototype. This name is easily changed by editing the m-spec and changing the

filename.

Integration Toolkit 88

www.manaraa.com

NUMBER OF EXCHANGES IN F IL E = 5

SENDER = ACSYNT/
RECEIVER = B-SPLINE TOOLKIT/

SENDER = ACSYNT/
RECEIVER = B-SPLINE TOOLKIT 5 2 0 /

SENDER = ACSYNT/
RECEIVER = B-SPLIN E TOOLKIT S G I/

SENDER = CLIENT X/
RECEIVER = CLIENT Y /

SENDER = CLIENT Y/
RECEIVER = CLIENT X /

Figure 19: Sample relation file entries.

Integration Toolkit

www.manaraa.com

When the exchange data structure (xchg_struct) is complete, the program opens a

socket on which to listen for connections. A socket data structure (sock_struc) is used

to keep track of the socket descriptors and the name of the client processes with which

they communicate. Once the initialization phase is complete, the integration server

repeatedly executes set_sel. This function will continuously check to see if there is any

activity on any of its sockets. A readjnask is set to include all sockets managed by the

integration server. The select subroutine looks at all the sockets in the readjnask for

activity. If a signal has occurred, the readjnask is modified to contain only that socket

which has received the signal. The readjnask and the sock_struc (containing all socket

descriptors and their client names) are passed to is_eval_sel. This function checks the

readjnask against all sockets in sock_struc to determine on which socket the signal

occurred. If the signal occurs on the listening socket, it is a connection request from a

new client. The connection is accepted and the resulting socket is put into sock_struc.

In order to cross-reference this socket descriptor with its client name, the integration

server must obtain the name of the client connected to it. To obtain this information,

the server sends a request to the new client for its name. Additionally, all clients who

can request data from the new client are instructed to add its name to their selection

lists.

If the signal occurs on any socket other than the listening socket, the socket descriptor

(read_sock) and sock_struc are passed to rd msg. This module is responsible for

reading the header from the active socket (read_sock). If no header data are present,

the client process to which the read_sock is connected has terminated. The socket is

closed and all clients in the integrated system which had listed that client in their

selection lists are informed to delete its name from the list. If there are data on the

socket, the header is read and sent to resolve_header along with the sock_strue.

Integration Toolkit 90

www.manaraa.com

Resolvejheader determines which module will handle the signal based on the

maj_opcode and min_opcode fields of the header data. Table 3 graphically depicts how

the major and minor opcodes are used to locate modules within the integration server.

put cl This module receives the name of a new client in the integrated
system and puts the name in sock struc to allow the new client's
socket descriptor to be referenced by name as well. The client
name is then sent to update_widget which will compare the new
client name with the sender elements of the exchange structure
(xchg_struct). Whenever there is a match, the receiver in the
exchange structure array which corresponds to the sender is a
client which can display the new client's name in its selection
list. Write_sock is the socket descriptor which corresponds to
these clients. The new client's name is sent to all clients who can
request data from it.

detjist This module fills the request for an initial list of clients for the
selection list. This request is issued by a client who has recently
connected to the integrated system. The module first reads the
name of the new client and then passes the name, the read_sock
(which is the new client's socket) and the sock_struc. The next
step is to match the new client's name with the receiver field of
the xchgjstruct (structure containing sender/receiver data
exchange relationships). A list of clients who can send data to
the new client is compiled, a header is constructed, and both are
written to the new client. The header field size_in_bytes contains
the number of list items the new client should expect to receive.

request data Requester and responder are used by the server to receive data
from one client, determine the responding client's socket
descriptor based on its name, and then to pass on the data to the
responding client. This module's purpose is to relay a request for
buffer data from the requester to the responder. The function

Integration Toolkit 91

www.manaraa.com

Table 3; Integration server opcode table

m ijor opcode
0

mejor opcode
1

major opcode
2

major opcode
3

major opcode
4

minor opcode
0 put_ci

minor opcode
1 det_liit requeat_data tmnifer_l

minor opcode
2

minor opcode
3

requett_
iltrib_li«

relay_attrib

minor opcode
4

requeil_from
_etlrib_liit

Integration Toolkit

www.manaraa.com

reads in the requester and responder names. The socket on which
the responder communicates with the server is determined by
cross-referencing the responder with its socket descriptor. The
server function then constructs a header and sends it along with
the requester's name to the responding client.

request_attrib_list The purpose of this module is to relay a request for an attribute
list from the requester to the responder. Both names are read by
the server function, the responding socket is located (using
sock_det) and a header is built. The header, the requester's
name, and the responder's name are sent. The responder is sent
its own name because it will in turn send it back to the server in
its responding message along with the attribute lis t.

request from The purpose of this module is to relay an item number from the
_attrib_list requester to the responder. This item number corresponds to an

element of the attribute list belonging to the responder. The
function reads responder and requester from the socket connected
to the requester. The responder's name is used to locate its
corresponding socket descriptor, response_sock. A header is
built and sent over response_sock along with the requester's name
and the list item which requires action.

The last two functions discussed are application specific.

transfer_l The purpose of this module is to receive data from a particular
client in the integration system and transform or translate chat
data into the format used by the requesting client. The easiest
way to structure this module is to have sub-modules called from
the main transfer function which are each dedicated to one
receiving client. In this manner, the data sent to the transfer
function can be treated specially for each client and modified,
manipulated, or even just relayed to the receiver (client which
requested the data). The choice of sub-module can be made

Integration Toolkit 93

www.manaraa.com

using a switch statement based on the receiver's name. The
client that sends data to the transfer function can send all the data
it can compile which will satisfy all data possibilities demanded
by the sub-modules. By doing this, the server takes the
responsibility away from the sending client.

relay_attribjist_s The purpose of this module is to accept a list of attributes from a
responding client and send it on to the client which requested it.
It is left as application dependent at this point, though it could be
generalized if the attribute list were limited to text strings. In
this case it would suffice to send the number of list items in the
header field size_in_bytes, followed by the list. Requester and
responder will need to be sent as well.

In summary, it is necessary to give an overall sense of how the integration clients and
server interact. The clients can be arranged such that they are all on different
workstations which are part of a network, all on the same workstation, or a
combination of the two preceding possibilities. If one or more clients occur on the
same workstation, they will appear in separate windows, as will each of their GRIM
widgets. For n clients on one workstation there will potentially be 2n windows. The
integration server can be located on the same machine as one or all of the clients, or on
a different workstation in the network. The integration server executes as a
background process; therefore, there will not be a window dedicated to the server
process. This description will become more obvious in the next chapter which
discusses the distributed integration solution prototype.

Integration Toolkit 94

www.manaraa.com

7.0 DISTRIBUTED INTEGRATION SOLUTION PROTOTYPE

To test the validity of the integration solution, a prototype integration system has been

developed. This prototype uses two significant CAD applications developed in the

Computer-Aided Design Laboratory of Virginia Tech which are integrated using the

method of freely connected interfacing. The first application is called ACSYNT

(AirCraft SYNThesis), which was developed jointly at the Virginia Tech CAD

Laboratory and NASA Ames Research Center. It is an interactive design and analysis

tool used to develop conceptual models of advanced aircraft. The application uses the

FORTRAN, C, and PHIGS standards. The main module of ACSYNT was written in

FORTRAN, and it is this module which must be invoked from the AP/SOCK interface.

The second application in the prototypical system is the ACSYNT B-Spline Module (B-

Spline Toolkit). Although the name implies that the B-Spline Module is part of

ACSYNT, the two applications are separate and independent programs which were

designed to complement each other. The applications were designed such that the B-

Spline Module is able to read hermite data files created by ACSYNT. The B-Spline

Module is an interactive CAD application which converts the geometry descriptions

commonly used in conceptual aircraft design codes to descriptions which meet the

requirements of preliminary design systems. The module enables designers to compute

intersections of surfaces described using non-uniform bi-cubic B-Splines and uses a

filleting algorithm to blend surfaces along iso-parametric curves. This application is C-

based and also uses the PHIGS standard for graphics. Though these two applications

were created to work together, they do not have similar data structures. ACSYNT

produces geometric models which use hermite surface representations. The B-Spline

Module can read files containing hermite surface data, but internally, surfaces are

represented as nonuniform B-Splines.

Distributed Integration Solution Prototype 95

www.manaraa.com

The machine chosen to host the integration server is an IBM RISC System/6000 Model

530. In this implementation, the two clients can be accessed on the 530 or an IBM

RISC System/6000 Model 520. The communication protocol is TCP/IP using Ethernet

adapters at the workstations. The BSD socket libraries vary slightly on workstations

from different vendors, but the porting process from one UNIX-based workstation to

another is relatively simple. For example, the clients, initially developed on the IBM

RISC System/6000 under the AIX (IBM's implementation of UNIX) operating system,

were ported to the SGI platform in a single afternoon with the exception of the GRIM

interface. This is because the current implementation of the SGI in the lab runs using

the windowing system called NeWS instead of X-Windows. Because of this

discrepancy in windowing environments, the GRIM would need to be ported to utilize

the interface toolkit called 4Sight, which is the NeWS equivalent of Motif. The Silicon

Graphics platform is also capable of operating under X-Windows, and if this were the

case, no port of the GRIM interface would be necessary.

The first step in the design process was to determine the data exchanges possible within

the integrated system. It was decided that the B-Spline Module should be able to

request data pertaining to the model in ACSYNT, but not vice versa. The transaction

path is one-way because, although the B-Spline Toolkit can handle hermite surfaces and

modify them to produce nonuniform B-Spline surface representations, the ACSYNT

application presently has no ability to utilize B-Spline surface representations in the

analysis portion of the program. With this in mind a file of exchange relations, called

exchange_buds, was created and the ACSYNT application was defined as the sender,

while the B-Spline Toolkit was defined as the receiver. This file will be read by the

Distributed Integration Solution Prototype 96

www.manaraa.com

integration server at initialization and used later to compile exchange client lists which

are displayed in the GRIM widget of each client application.

In order for the user to request data exchanges in the integrated system, a GRIM widget

must be created for each client application. The pathname in the GRIM modules was

changed to a unique value for both the B-Spline Module and ACSYNT's widgets, then

each was compiled using an unduplicated name for the executable file. The executable

widget which is dedicated to the B-Spline Module is called grimmy, while that which

belongs to ACSYNT is called grim2. The pathnames used to produce the widgets must

be duplicated in their owning client application's main module if communication is to

occur between them.

Next, the client applications must be created. Using the base system structure charts in

the Integration Toolkit, it is easy to determine which modules are application specific

(this information is contained in the m-specs). The main module of each client

application must be modified to include the unique pathname of its GRIM widget and

to make global any data that are common to the client interface and the CAD

application it manages. A description of how ACSYNT and the B-Spline Module were

modified to fit into the form of the client application follows. Often the exact order of

module execution is not preserved when describing a module's function. This is done

when the function of the module is more easily understood when events are explained

in a modified sequence. In any case, the concept remains intact.

Distributed Integration Solution Prototype 97

www.manaraa.com

7.1 The ACSYNT Client Application

Following the flow of the client application structure charts contained in the Integration

Toolkit, the first module modified was ap_sock. In this module, the pathname

definition was changed to match that of the pathname defined in grim2 (ACSYNT* s

GRIM widget). The pathname was defined as /u/michele/grim/acsynt/s.acssock, where

s.acssock is the UNIX socket filename. Next, the main module of ACSYNT had to be

changed to a subroutine, thus allowing it to be invoked from the module main_ap. It

is not a problem that the calling module is C-based and the subroutine is FORTRAN-

based. Since ACSYNT is primarily a FORTRAN-based application, any data used in

the common buffer shared with the client interface would need to be passed in an

argument list to the subroutine which was formerly ACSYNT's main module. In the

case of this CAD application, a common data buffer was not needed. Instead,

functions defined in ACSYNT were utilized which access a geometry database

containing current information on the displayed model were utilized. More explanation

on these functions will be given as the discussion progresses, but the main point is that

no data needed to be passed into ACSYNT from the client interface; therefore, no data

were declared as global between the two.

In order to send data to the integration server for eventual transfer to the B-Spline

Module, the modules called by cljswop which transmit model data need modification

for use with ACSYNT. There are three modules which will need development. These

are the modules which respond to a request for buffer data, compile an attribute list for

ACSYNT models, and respond to a request for an item from the attribute list. No

action is necessary for modules designed to receive buffer data from another client or to

relay the attribute list from a second client to its dedicated GRIM widget. This is

because the only other client in the integrated system, the B-Spline Module, will not

D istributed Integration Solution Prototype 98

www.manaraa.com

send that kind of data since its only function in the system is to receive data from

ACSYNT. As a result these modules will not be used, and are therefore ignored.

They will, however, be addressed in the B-Spline section.

To extract data from the ACSYNT geometry databases, several of the ACSYNT

database utilities were accessed from the modules called by cl_swop. Again, we will

mix the C-code of the module with calls to the utility subroutines which are written in

FORTRAN. Pointers must be used to pass data from a C function to a FORTRAN

subroutine. This means names of arrays, which are pointers to a location in memory,

need no special consideration, but reals and integers need their addresses passed to the

subroutine instead of their values. Take for example the utility function used to get a

component list from the ACSYNT geometry database:

(void) gtgmpk(&ncomps, comps);

where ncomps is defined as an integer and comps as an array of integers. The

ampersand preceding ncomps represents the address of the variable in C code. The

(void) in front of the subroutine name is necessary when calling FORTRAN functions

from a module written in C.

The ACSYNT module written to send data to the integration server because of a buffer

request from another client is called respond to request. This module uses several

geometry database utility functions from ACSYNT to construct a data representation of

the current model. Before sending data, the header is built such that size_in_bytes

contains the number of components in the current model. The major and minor

opcodes are 2 and 1, respectively, which direct the data received by the server to the

Distributed Integration Solution Prototype 99

www.manaraa.com

transfer function which will handle it. By paging forward to Table 6, the opcodes can

be used to locate the module at the server which will handle data transfer. The data are

sent to the server component by component. Data transmitted includes component

name, component number, color, number of cross-sections, number of points per cross-

section, and finally a list of points. The transfer function located at the integration

server which corresponds to the ACSYNT client application must receive the data in

the exact order they were sent.

The module used by ACSYNT to compile an attribute list is called give_attrib_list. It

too uses utilities for accessing the geometry data structure. In fact it makes use of the

subroutine used in the above example to get a current list of the components in the

current model. The header is built such that the size_in_bytes contains the number of

components in the list. The major and minor opcodes are 2 and 3, respectively, which

guide the signal received by the server to the module which will handle the relay of the

attribute list to the requesting client. Again, using Table 6, the function at the

integration server which will treat this data is easily located.

The module which will react to the request for data based on the choice of an element

from ACSYNT's attribute list is called respondattrib list. The list item is identified

by a number which corresponds to the component number in ACSYNT's geometry data

structure. The data representing the component are extracted from the data structure

and sent to the same transfer function at the server as were the buffer data. This is

because the form of the data is identical. The only difference is that a buffer data

request sends several components worth of data, while the data of only one component

will be sent for the response to the attribute list choice request.

Distributed Integration Solution Prototype too

www.manaraa.com

In order to place these modules in the proper location with respect to the opcode tables,

the major and minor opcodes to which they will respond must be defined. The major

opcode is already specified with respect to purpose (see Chapter 4.3). Since all of the

modules described for the ACSYNT client application are used to respond to requests,

they are of major opcode category 3 - Response. The only factor left to resolve is the

minor opcode. There is really no methodology for choosing the minor opcode, except

that it could be used to denote a transaction level. A transaction level could be thought

of as a request/response sequence. This sequence is illustrated in Figure 20. Note that

the flow of the sequence is from left to right.

As can be seen from the figure, when a client requests data, the request is relayed

through the server to the responding client. When the responding client sends data in

fulfillment of the request, the data goes first to the server, then finally to the requesting

client. All major opcodes for this sequence are pre-defined according to what the data

does, but the minor opcode should be the same (or mostly the same) for all members of

the transaction. Table 4 shows the opcode values for the modules described in this

section, as well as the modules which are used for initialization.

When the client application has been compiled and linked to form an executable, in this

case called acsynt, the last step is to create a UNIX script which will start the GRIM

(grim2) as a background process, sleep for about three seconds, then invoke the client

application.

Distributed Integration Solution Prototype 101

www.manaraa.com

CLIENT

REQUEST REQUEST

RESPONSERESPONSE

INTEGRATION
SERVER

RELAY REQUEST

TRANSFER RESPONSE

CLIENT
2

Figure 20: Request/response sequence.

D istributed Integration Solution Prototype 102

www.manaraa.com

Table 4: The ACSYNT client application opcode table.

major opcode
0

major opcode
1

major opcode
2

major opcode
3

major opcode
4

minor opcode
0 •endnam e update_widget

minor opcode
1

ieapond_
to_requeii

minor opcode
2 get_cl_li*t

minor opcode
3 give_attrib_lift

minor opcode
4

rerpond_attrib
_liat

Distributed Integration Solution Prototype

www.manaraa.com

7.2 B-Spline Client Application

The B-Spline client application was created by modifying the main module to include

the same pathname definition used with the B-Spline's GRIM widget. The socket

filename used is s.grimsock and the pathname is the path location of the socket file (in

this case /u/michele/grim/execs/s.grimsock). The source code of the B-Spline Toolkit

was then modified such that the main module was now declared as a sub-function. In

addition, common data were declared between the client interface and the B-Spline

Module. The data common to the two is a data structure called MODEL, which

contains all the data necessary for the display of the B_Spline model. Figure 21 shows

the declaration of the MODEL data structure. Note that MODEL contains a pointer to

another structure called comp_data. This structure contains data specific to a single

component. It is represented by a pointer which allows MODEL to allocate space for

one component at a time, instead of statically allocating space during initialization of

the program.

When incoming data are to be displayed by the B-Spline Toolkit, it is read into the

MODEL data structure, then displayed. It is only because the client interface has

access to the MODEL structure that data can be read directly into it. Since this data

structure is initialized in the ap_sock module as a global, it is referenced in the former

main module of the B-Spline Toolkit as an external variable. All initializations of the

MODEL variable that were previously performed by the former main module are

deleted. The other modules which need to be modified to form the B-Spline client

application are those which deal with the request and reception of data. Since the B-

Spline Module will not produce data to send to ACSYNT, no modules which are

Distributed Integration Solution Prototype 104

www.manaraa.com

Model Data Structure

typedef struct {
int num_comp;int acs_Foot;
int nubs_root;
int int_root;
int filIet_root;
comp_data *comp;
struct intersection_type ‘imlist;

/* number of components in model
/* root structure id */
/* Non-Uniform B-Spline root id */
/* Structure id for intersection data

/* pointer to beginning or linked list
/* list of intersections */
} MODEL;

Component Data Structure

typedef struct compdata_type {
int comp_number;
char comp_name[20J;
int acs_id;
int nubs_id;
int *hull” id;
int filletjd;
int operif2];
int color;
int existence;
int nu;
int nw;
int acs_ncross;
int acs'npts;
float ***acs_pts;
float ***acs_utan;
float ***acs3wtan;
int nu_knotsj
int nw” knots;
float *u_knot;
float *w” knot;
float ***hull;
struct compdata_type ‘next;

!* component number *!
/* component name */
I* structure id */

/* open flag 1 closed 0 open */
/* component color */
j* 1 exists 0 does not exist */
/* rendering in u */
/* rendering in w •/
/* number of cross sections •/
/* number of pts j>er xsection •/
/* pointer to component pts *f
j* pointer to tangents in u dir */
/* pointer to tangents in w dir */
I* number of u knots •/
/* number of w knots */
/* u knot array */
/* w knot array */
I* control hull */
/* pointer to next component "/
}comp_data;

Figure 21: B-Spline MODEL data structure.

D istributed Integration Solution Prototype

www.manaraa.com

responsive to model data requests are necessary. The modules which need modification

include:

- The module which will request an element from the attribute list of another
client (remember this could be considered generic if the stipulation is made that
integers are used to identify list items).

- The module which relays the attribute list from the responding client to the
GRIM widget for display (also possibly generic).

- The module which receives buffer data requested from another client.
- The module which receives attribute data requested from another client.

In most cases the module which receives buffer data will also handle the attribute data.

This is because the transfer function at the integration server is cognizant of the data

structure of the receiving client and gears the sending of transfer data to that structure.

It is possible, however, that a special case exists. In the case of the base structure

charts for the client application, both types of data are thought to be handled by the

receive_buffer module.

The two modules mentioned above which deal with aspects of relaying the attribute list

can be generalized; thus, the modules in the Integration Toolkit need no modification.

This is because the stipulation is made that attribute lists consist of text strings and the

item identifiers passed during a request based on the attribute list are integers. This is

the case in the client applications used in the prototype system. The module used to

relay the request for an attribute list is called req_attribute_list. It sends a header to

the integration server with major and minor opcodes of I and 3, respectively. Again,

refer to Table 6. The module which accepts the list of attributes in the form of text

strings and passes them on to the GRIM is called relay attrib list. This module builds

a header with a major and minor opcode of 2 and 3 which is sent with the data to the

Distributed Integration Solution Prototype 106

www.manaraa.com

GRIM (see Table 1). The module which sends the identifying list item, in the form of

an integer identifier, is called req_from_attrib_list. This function builds a header

with major and minor opcodes of 1 and 4, respectively, and sends it to the server.

Remember, a major opcode of 1 is defined for requests, while 2 is for buffer updates or

transfers.

The only module left to be modified is the one which receives data from the transfer

function at the integration server. This module is called receive_buffer and its first

task is to clear out the existing MODEL structure (current data model). Next,

initialization of the several elements of the MODEL data is performed and the number

of components contained in the incoming data is read. For each component, the

component name, number, color, number of cross-section, number of points per cross-

section, and a list of points is read. Note that this read order must be respected by the

order data is sent from the integration server. After all data are read from the

integration server, the MODEL structure is passed to a function which computes the

hermite tangents for the surfaces. The model is then ready for display.

Table 5 defines the major and minor opcodes as defined in cl_swop. These opcodes

enable the B-Spline client application's event handler to locate the proper module to

handle the signal data.

When the client application has been compiled and linked to form an executable, in this

case called acsnubs, the last step is to create a UNIX script which will start the GRIM

(grimmy) as a background process, sleep for about three seconds, then invoke the client

application.

Distributed Integration Solution Prototype 107

www.manaraa.com

Table 5: The B-Spline client application opcode table.

major opcode
0

major opcode
I

major opcode
2

major opcode
3

major opcode
4

minor opcode
0 *cnd_name updale_widgel

minor opcode
1

ielay_data
_reque«l rcv_ac»ynt

minor opcode
2 get_cl_liit

minor opcode
3 req_attrib_liii

relay_attrib
_lint

minor opcode
4

wq_from_

Distributed Integration Solution Prototype

www.manaraa.com

7.3 The Prototype Integration Server

The only modules which need to be modified or created are those which handle the

signal data incoming from the integration clients in the system. In other words,

modules called from the resolvejheader function (the function which directs signal

data to a certain module based on opcodes contained in the signal header). Of the

modules called by resolveJieader, several are generic and do not need modification.

The ones that are application specific, however, do need to be modified or even added.

Such modules include transfer functions which receive input data from one client in the

system (ACSYNT) and transform or modify it to send to another (B-Spline Toolkit).

In the design of a transfer function, it is necessary to know the order of the input data

so that it can be read off of the socket. It is also necessary to know the method in

which the receiving client expects to read sent from the transfer function. Given these

two constraints, the transfer function then defines a method to either transform or

translate the incoming data into output.

The transfer function which the integration server uses to transfer data from ACSYNT

to the B-Spline Toolkit is called acsynt_to_bspline. This module receives the data sent

by ACSYNT in the order they were sent out. It also builds a header to send to the

receiving client in which the size_in_bytes contains the number of components to

expect and the major and minor opcodes are 2 and 1, respectively. These opcodes

correspond to the position of the receiveJbuffer module of the B-Spline client

application in Table 5. The data received from ACSYNT are evaluated and the points

in each cross-section are reordered to be consistent with the representation used in the

B-Spline Module. The data are then transmitted to the receiving client (B-Spline

Toolkit) in the order it expects to read the data from the receiving socket.

Distributed Integration Solution Prototype 109

www.manaraa.com

There are two other modules which may need modification. One relays the attribute

list compiled by one client to another which will display it. The other relays the

attribute list item which is being sent back to the client who owns the attribute list for

data which correspond to the item. Both of these modules can be considered generic if,

as mentioned before, the attribute list is limited to text and the item returned is an

integer. For the purposes of this prototype this constraint is valid and the modules are

considered general. For the sake of understanding data flow in the system, the module

which requests the attribute list from ACSYNT, request attrib list, builds a header of

maj_opcode 3, min_opcode 3. From Table 4, it is seen that give_attrib_list will

respond. As was explained previously, give_attrib_list compiles a list and sends it

along with a header of major and minor opcode 2, 3. This corresponds to

relay attrib list s in Table 6. This module passes on the list data to the B-Spline

client also with a header of 2, 3. Referring back to Table S, we see that the opcode

sequence locates relay attrib list at the B-Spline client application. The B-Spline

module keeps the same header definitions (major 2, minor 3) and transmits header and

list data to its GRIM widget. Using Table 1, we see that the header corresponds to

g make attrib list, which will read in the list data and display them to the user.

Table 6 shows how the opcodes contained in the header structure of data incoming to

the integration server are directed to the module which will handle the signal.

By studying the headers defined by each module contained in Tables 1,4,5 and 6, the

flow of data in the system can be traced. These are the tables contained in the opcode

table portion of the Integration Toolkit. For integration system designers who want to

add new modules to the integrated system, a table of opcodes for each client application

and the server is a graphical aid when defining new headers and locating modules.

Distributed Integration Solution Prototype 110

www.manaraa.com

Conceptually the integration server should be able to handle any number of client

applications. However, in the prototype coded for this research, a limit of 50 clients

was set because of the array sizes in the socket data structure. Linked lists would

eradicate this limitation, but for the purpose of this research, arrays were faster to code

and to execute. Code specific to the integration server portion of this prototype

integrated system has been delivered to the research sponsor, though some of the

application-specific code produced for the prototype appears as examples in the m-specs

contained in Appendices C, D, and E.

7.4 Data Exchange in the Prototypical Integration System

Once the integration client and server have been created, the system is ready for

implementation. The server is started as a background process running on the IBM

RISC System/6000 Model 530. The server can be run continuously if desired. The

clients can then be started at any time. If the server is not available and a client is

started, an error will result. The B-Spline client application can be run on either the

IBM RISC System/6000 Model 530 or Model 520. ACSYNT is also available on both

of these platforms. These machines are connected by a local area network using

TCP/IP and Ethernet. For the sake of an example, let us consider the scenario where

the server is running as a background process on the Model 530, the B-Spline client

application is on the Model 520, and the ACSYNT client application on the SGI

4D/80GT. This configuration is shown in Figure 22.

The ACSYNT client application is started using the racsynt exec which can be found in

Appendix F. The resulting client is shown in Figure 23. At this time, the ACSYNT

Distributed Integration Solution Prototype 111

www.manaraa.com

Table 6: Integration server prototype opcode table.

major opcode
0

major opcode
1

major opcode
2

major opcode
3

major opcode
4

minor opcode
0 put_cl

minor opcode
1 d e tj i i t requett_daia

ac iy n tjo
_bapline

minor opcode
2

minor opcode
3

requeat_
attribjiat

relay_attrib
_liat_n

minor opcode
4

requeat_from
_* n rib jiit

Distributed Integration Solution Prototype

www.manaraa.com

IBM RISC
System/6000
Model 530

B-Spline
Module ACSYNT

IBM RISC Silicon Graphics
System/6000 4D/80GT
Model 520

Figure 22: Prototype client applications and integration server.

Distributed Integration Solution Prototype

www.manaraa.com

Figure 23: The ACSYNT client application.

Distributed Integration Solution Prototype

www.manaraa.com

client application is connected to both its dedicated GRIM widget and the server. The

client application has sent its name to the GRIM for display above the selection list, as

seen in Figure 23, and has sent a request to the integration server for a list of exchange

clients. No data will be returned by the server in fulfillment of this request since there

are no other applications currently connected to the integration server, and because

there are no sender/receiver relationships listed in the server's exchange structure

where ACSYNT is a receiver. Therefore the selection list remains empty. A user can

now proceed to use the client application as if it were a stand-alone program (not

connected to the integrated system). A conceptual-level model of a General Dynamics

F-14 fighter jet is created and displayed.

The B-Spline client application is started using the racs script described earlier. This

exec can be found in Appendix F. The dedicated GRIM starts, a few seconds pass,

then the B-Spline application client appears. The client application connects to the

GRIM and soon thereafter sends its name as the response to a request. The name is

displayed in the GRIM widget above the selection list. The client also connects to the

integration server, and requests a list of exchange clients. The server responds with the

names of clients currently connected from which the B-Spline client application can

request data. This name, ACSYNT, is placed in the widget's selection list as shown in

Figure 24. Note that the B-Spline option is not included in the selection list of the

ACSYNT application since the inverse data exchange was not defined in the exchange

relations file. In other words, there is no provision for data passed from the B-Spline

Module to be sent to ACSYNT; thereby obviating the need for a user at ACSYNT to

request data from the B-Spline Module.

Distributed Integration Solution Prototype 115

www.manaraa.com

uw%
#****’

Figure 24: The B-Spline client application prototype.

Distributed Integration Solution Prototype 116

www.manaraa.com

The B-Spline client application is now ready to request data from ACSYNT. If the

current model displayed by ACSYNT (F-14) is desired, the following sequence of

widget manipulations must occur. The first toggle button in the widget, request buffer

data from client, is depressed, "ACSYNT" is chosen from the selection list, and the

activate exchange toggle is selected. The activate exchange toggle will display a panel

with the name of the sending application and wait for the user to select one of two

buttons for further action. If the OK button is chosen, the data exchange takes place.

If the CANCEL button is selected, the exchange is abandoned.

Alternatively, the B-Spline client could request a single component from ACSYNT.

To do this, the client attribute listing toggle is depressed and the "ACSYNT" client

name is chosen from the selection list. ACSYNT responds by supplying a list of data

attributes, which are displayed by the B-Spline client application's widget. The user

then has the option of choosing one of the items from the list and then selecting the OK

button to send the data request. If the user is not interested in the list items he can use

the CANCEL button to exit the attribute list without further action. The client attribute

list of a client in the integrated system is dynamic since it often depends on information

about the current model being displayed. For example, in the ACSYNT client

application, the attribute list consists of components of the current aircraft model.

Since not every model contains the same components, the list is model dependent and

must be re-created each time it is requested by another client in the system.

The Figure 25 shows an example where the B-Spline and ACSYNT clients were

executed on the same workstation. This is intended to show how the clients appear

after the B-Spline client has requested the wing component data from the ACSYNT

client's current model.

Distributed Integration Solution Prototype 117

www.manaraa.com

Figure 25: B-Spline and ACSYNT clients running on the same workstation.

Distributed Integration Solution Prototype 118

www.manaraa.com

8.0 CONCLUSIONS

The prototype integration system has proven that it is feasible to implement the

distributed integration solution. The prototype was effective in demonstrating the

transfer of data among CAD/CAM applications residing in a network environment on

remote and local platforms. A user at an application connected to the integration server

can request the current model data from a second application connected to the server.

The user also has the option of requesting some component of that data in lieu of the

entire model. Once the model data have been transferred to the requesting application,

the model can be modified and manipulated since it now belongs to the application

which imported it. It is worth mentioning that a third CAD application was added to

the prototype integration system with minimal effort. The application is a GL-based

surface modeler called SURF. The modeler was developed at this laboratory and uses

a data structure similar to that of the model used in the B-Spline Toolkit. Because of

this similarity, the transfer function at the integration server which transforms hermite

surface representations into nonuniform B-Spline surfaces was utilized to send data to

the new application. A client interface for SURF was constructed following the

structure charts and module specifications contained in the Integration Toolkit. The

reusability of modules, in this case the transfer function, and the presence of CASE

tools significantly reduced the amount of time necessary to integrate a new application

into the integrated system.

The prototype integration system was used to test the validity of the tools used to

generate an integration system and the effectiveness of the distributed integration

solution. As a direct result of the research described in this document, five objectives

were achieved :

Conclusions 119

www.manaraa.com

1) Creation of a communication protocol for data passing in the context of an
integration system.

2) Addition to the components of an Integration Toolkit which is part of the
CAD/CAM CASE Workbench.

3) Creation of a distributed integration solution which is implemented in the
Integration Toolkit.

4) Development of tools in the form of data flow diagrams, process specifications,
data dictionary, structure charts, and module specifications to aid an integration
system designer in generating an integration system based on the distributed
integration solution.

5) Demonstration of the validity of the distributed integration solution by a
prototype system which was effected using two CAD applications.

These five items are a product of the research objectives presented in the introduction of

this dissertation. Explanation of each objective appears in the order presented at the

beginning of the document. First, the socket-based communication protocol used in the

integration system stemmed from an investigation of mechanisms used for interclient

communication. Second, the distributed integration solution was created such that it

includes a core element, the integration server, which manages the exchange of data and

information between integrated applications. Tools were developed to aid in the

generation of integration systems based on the distributed integration solution. And

finally, a prototype integrated system was implemented using the distributed integration

solution as a basis for integrating two CAD applications.

Conclusions 120

www.manaraa.com

In addition to the objectives stated above, requirements for the distributed integration

solution were also specified. These objectives will be described one at a time in order

to clarify them. The first objective was database access and storage of pertinent

CAD/CAM data. Note that although a database was not included in the prototype

integrated system, it was originally described as an optional member of the system.

The database would essentially be another client in the integration system, connecting

to the integration server and sending and receiving data through it. The second

objective specified inter-application communication. Inter-application communications

are complex in that they rely on several components in the integration system (such as

the GRIM, the AP/SOCK Interface, and the integration server) for implementation.

Thirdly, a goal of the distributed integration solution was to enable applications to run

in a distributed and simultaneous environment. The applications described in this

research are usually interactive in nature and are able to execute in a network

environment in a concurrent fashion. A fourth specification was functional access of

other applications in the integrated environment without terminating the session of the

current application. This is made possible by the use of asynchronous sockets for

communication. Asynchronous sockets allow the CAD/CAM application to proceed as

usual until the occurrence of a signal. When a signal does appear, the application is

suspended, not terminated, until the data can be taken from the socket and resolved.

The fifth objective was for transfer of data among applications. This is accomplished

by allowing the user to specify data exchange transactions using a widget interface

(GRIM) which belongs to the client that will receive the data. All data exchanges are

request oriented. Last of all, there was a specification for a system executive which

oversees and manages interclient and database interactions. In the distributed

integration solution, this system executive is called the integration server. Ail of the

intended goals have been met by the distributed integration solution.

Conclusions 121

www.manaraa.com

There are a few more advantages of the distributed integration solution which are worth

mentioning. First of all, it allows the system integration designer to exploit the

capabilities of different applications instead of locking him into a procedure for data

extraction and exchange. Using the geometry database utility functions of ACSYNT to

extract data is a good example of this. It can handle the integration of CAD

applications whose source code may or may not be available. Clients connecting to or

disconnecting from the integration server do not adversely affect the system as a whole.

It enables the system integration designer to choose from three types of integration

schemes. It is valid in a network environment for n clients. And finally, the use of the

Integration Toolkit greatly facilitates the task of the integration system designer by

giving him graphical guidelines to follow.
*

Conclusions 122

www.manaraa.com

REFERENCES

[Brau85] Brauner, K. and Briggs, D. The Second Draft of the Ad Hoc Committee on
the Content and Methodology of the IGES Version 3 (The Second PDES Reports
revision B, Jan. 1985.

[Chri84] Christman, A.M., "Update on CAD, CAM, and CIM", I&CS - The Industrial
and Process Control Magazine, vol. 57, no. 5, May 1984, pp.53-57.

[Colt91] Colton, J.S. and Dascanio, J.L., "An Integrated, Intelligent Design
Environment", Engineering with Computers, vol. 7, no. 5, winter 1991, pp. 11-22.

[Come91] Comer, D.E., Internetworking with TCP/IP - Volume I. Prentice Hall,
Englewood Cliffs, New Jersey, copyright 1991.

[Date90] Date, C.J., An Introduction to Database Systems. Volume I. Addison-Wesley
Publishing Company, copyright 1990.

[Enca90] Encamacao, J.L. and Lockemann, P.C., Engineering Databases: Connecting
Islands of Automation Through Databases. Springer-Verlag, copyright 1990.

[Fari90] Farish, M., "Splendid Isolation", Engineering, vol. 230, no. 8, Sept. 1990,
pp.20-22.

[Fenv90] Fenves, S., Flemming U., Hendrickson, C., Maher, M. and Schmitt, G.,
"Integrated Software Environment for Building Design and Construction", CAD,
vol. 22, no. 1, Jan/Feb 1990, pp.27-36.

[Furl90] Furliani, C., Wellington, J. and Kemmerer, S., Status of PDES-Related
Activities (Standards and Testing^. National PDES Testbed Report Series, U.S.
Department of Commerce, October 1990.

[Guti89] Gutin, R.H., "Gral: An Extensible Relational Database System for Geometric
Applications", Proceedings o f the Fifteenth International Conference on Very Large
Data Bases, Amsterdam 1989, pp.33-44.

HBM901 IBM Communications Programming Concepts - AIX Version 3 for RISC
System/6000. First Edition (March 1990), copyright International Business
Machines Corporation, publication 0SC23-22O6-OO.

References 123

www.manaraa.com

[Jaya90] Jayaram, S. and Myklebust, A., "Automatic Generation of Geometry
Interfaces Between Applications Programs and CADCAM Systems", G4D, vol. 22,
no. 1, Jan/Feb 1990, pp.50-56.

[John91] Johnson, E.F. and Reichard, K., Power Programming ... MOTIF.
Management Information Source, Inc., copyright 1991.

[Kim84] Kim, W., Lorie, R., McNabb, D. and Plouffe, W., "A Transaction
Mechanism for Engineering Design Databases", Proceedings o f the Tenth
International Conference on Very Large Data Bases, Singapore 1984, pp.355-362.

[Liew82] Liewald, M.H. and Kennicott, P.R., "Intersystem Data Transfer via IGES",
IEEE Computer Graphics & Applications, May 1982.

[Lu86] Lu, L., Myklebust, A. and War, S., "Integration of a Helicopter Sizing Code
with a Computer-Aided Design System", Journal o f the American Helicopter
Society, Oct 1987, pp. 16-27.

[Mars86] Marshall, J. and Van Dyne, D., "Integrating CAE, CAD, and CASE",
Digital Design, vol. 57, no. 6, June 1986, pp.40-46.

[Mccl89] McClure, C ,, CASE is Software Automation. Prentice Hall, Englewood
Cliffs, New Jersey, copyright 1989.

[Meye91] Meyers, S., "Difficulties in Integrating Multiview Development Systems",
IEEE Software, vol. 8, no. 1, Jan 1991, pp.49-57.

[Mykl90-1] Myklebust, A. and Pennington, S.L., A Research Report to the IBM
Corporation. July 1990.

[Mykl90-2] Myklebust, A. and Pennington, S.L., A Research Report to the IBM
Corporation. Dec 1990.

[Pall91] Pallatto, J. "IBM to Erect Vast Database Warehouse", PC Week, vol. 8, no.
31, Aug 5, 1991, pp.l & 8.

[Nye90] Nye, A. (editor), X Protocol Reference Manual, vol. 0, O’Reilly and
Associates, Inc., Sebastopol, California, copyright 1990.

[Page88] Page-Jones, M. A Practical Guide to Structured System Design, Yourdon
Press, Prentice Hall Building, Englewood Cliffs, New Jersey, copyright 1988.

References 124

www.manaraa.com

[Penn91] Pennington, S.L., A Software Engineering Approach to the Integration of
CAD/CAM Systems. Doctoral Dissertation, Virginia Polytechnic Institute and State
University, March 1991.

[Smit90] Smith, D. and Oman, P.W., "CASE Analysis and Design Tools", IEEE
Software, vol. 7, no. 3, May 1990, pp. 15-19.

[Oman90] Oman, P.W., "CASE Analysis and Design Tool", IEEE Software, vol. 7,
no. 3, May 1990, pp.37-43.

[Reis90] Reiss, S.P., "Connecting Tools Using Message Passing in the Field
Environment", IEEE Software, vol. 7, no. 4, July 1990, pp.57-63.

[Rowe88] Rowell, L.F., Schwing, J.L. and Jones, K.H., "Software Tools for the
Integration and Execution of Multidisciplinary Analysis Programs",
AIAA/AHS/ASEE Aircraft Design, Systems and Operations Meeting, Atlanta,
Georgia, Sept 1988 (AIAA-88-4448).

[Your89] Yourdon, E. Modem Structured Analysis. Yourdon Press, Prentice Hall
Building, Englewood Cliffs, New Jersey, copyright 1989.

References 125

www.manaraa.com

APPENDIX A; DATA DICTIONARY

Appendix A

www.manaraa.com

applicalion_in_data (data flow) =
[request_applicationJnfo
I new_buffer_data

].
* The data is split into requests for the application
and new information for the application to display. *

application_out_data (data flow) =
[response_app_out
I request_app_out

].
* The output from the application will be either in the
form of actual information (such as name, buffer data, etc)
or request data. *

attributejistjchoice (data flow) =
responder
+ listjtem.
* The responder’s name is necessary to allow the integration
server to determine to which of the processes connected
to the server is the responding application. The header
is used to instruct the receiving process on how to
evaluate the data which follows. The list item is
the item number from the attribute list which was
supplied by the responding application in a proceeding
request/response sequence. *

callback (data flow) =
[request_buffer_callback
I request_attribute_list_callback
I request attributejtem callback

].
* Defines the actions based on the event generated
at the widget interface by the user.1"

choice_data (data flow) =
[buffer.data
+ application.name

]
I [attributejist

+ applicationjiame
]

I [item_from_attribute_list
].

* The user can perform one of three actions at the
widget: a request for buffer data from a named
application, a request for the attribute list of
a named client, or the choice of an element from
a previously requested attribute list. These three request
choices correspond to the three [choices] above *

Appendix A

www.manaraa.com

clientJnjdata (data flow) =
[widget_in_data
I application Jn_data

].
* These are the standard data items sent by the server to
clients in the integrated system. *

clientjoutjdata (data flow) =
[widget_request_forward_server
i response_app_out
I initialize client

].
* The widgetjequest_forward_server is data sent from
the widget to the client for transmission (relay) to
the server. Response_app_out contains actual information
from the application itself (such as buffer data, attribute
list, etc). Initializej:lient is performed only once
at setup of the client. *

common .buffer (store) =
[applicationjiame
I atuibute.list
I attributejlata
I bufferjlata

].
"'The attribute list is given to a requesting client. With
it the requester can choose a component of the current
model being displayed, instead of requesting the entire
model. Attribute data is generated in response to a request
resulting from use of the attribute list. The buffer data
is the current model. *

connectionJnfo (data flow) =
[connectionjequest
I socket_closed

].
* There are two types of data that affect the GRIM widget’s
socket with its client The first is a connection request
which establishes the socket, and the second alerts the
widget that the client is no longer available for
communication. *

connection jequest (data flow) =
*a request sent by client to server for socket-based
communications*

data_for_application (data flow) =
new_buffer_data.
* The application gets information for the current model

Appendix A

www.manaraa.com

from the common data store and displays it in the
current buffer. *

data_for_cIientl (data flow) =
header
+ client_in_data.
* These are the standard data items sent by the server
to clients in the integration system. *

data_for_c!ient2 (data flow) =
header
+ client_in_data.
* These are the standard data items sent by the server to
clients in the integration system. *

data_for_widget (data flow) =
header
+ w_data.
*data_for_widget is in one of two forms, a request
for connection with the GRIM widget from a client,
or data from the client which will be displayed
in the widget for selection by the user *

data_from_application (data flow) =
[application_name
I attribute Jist
I attribute.data
I buffer_data

1.
* Information accessible from the application.
This includes a list of data sttributes that other
clients can request, data from the application which
corresponds to items in the attribute list, or data
which describes the current buffer being displayed. *

data_ffom_clientl (data flow) =
header
+ client_out_data.
* client_out_data includes all data sent from the
client, including requests for data and connection,
as well as responses to requests from another client. *

data_from_cIient2 (data flow) =
header
+ client_out_data.
* clientjoutjdata includes all data sent from the client
- including requests for data and connection, as well
as responses to requests from another client. *

data_to_application (data flow) =

Appendix A

www.manaraa.com

[x-formed_buffer_data
lx_formed attribute_data

].
* This is data which has been changed in format and sent to
the application Data of this form is data requested from a
a client in the system and data requested from an attribute
list of a client in the system.4

decision_data (data flow) =
[request_current_buffer
+ applicadon_name
+ activate_exchange

]
I [request_attribule_list

+ application_name
1

I attribute_lisf_choice.
* There are three actions the user may perform:
Request the current buffer from application 2 (as named in
application name), request a list of data attributes
from application 2 (again, as named in application name),
and request data based on a choice from the attribute
list supplied by application 2 (again, again, as named in
application name). *

event (data flow) &
[request_buffer_event
I request_attribute_Iist_event
I request_attribute_item event

].
* These define possible user actions *

header (data flow) =
size_in_bytes
+ maj_opcode
+ min_opcode.
* Hie header is the first chunk of information read
from the socket by the receiving process. Using the
size_in_bytes the process can expect how much data
will follow. The major and minor opcodes are used
by the receiving process to “handle" the incoming data. *

initialize_client (data flow) =
[connection_iequest
I request_for_xchg_app_list

1.
* These are requests used to set up the client who has
requested a connection with the server. *

Iist_choice (store) =

Appendix A

www.manaraa.com

current_Iist_item.
* Denotes (he list item chosen from the client attribute list. *

list_updateJnfo (data flow) =
add_or_deiete
+ list_name.
* Based on add_or_delete the list name which follows will
be put in the exchangejist of the widget, or taken out. *

new_buffer_data (data flow) =
[x-formed_buffer_data
I x-foimed_attribute_data

].
* This is the data which will revise the model displayed
in the application which receives it into its common
data area. *

relay_data (data flow) =
attributejist,
* This is the attribute list of application client. It
does not need to be transformed in any way, merely relayed
by the server to the client which requested this data. *

request_app_out (data flow) =
[connecdon_request
I request_for_xchg_app_list
I requestjbuffer
I requesi_auribute_list
I request_attribute_data

].
* Characterizes the types of requests the client will
send to the server. *

request_application_info (data flow) =
[application_name_request
I buffer_data_request
i attribute_list_request
I attribute_data_request

].
* These requests apply only to the state of the application.*

request_attribute_item_callback (data flow) =
attribute_list_callback
-i- attrib_list_item_callback
+ ok_callback.
* The callback which will request an item from an attribute list
is a combination of the request for the list, a list item,
and then an ok... to go ahead with the request The
sequence used to invoke the callback is attribute list
toggle callback function, followed by an item from the list

Appendix A

www.manaraa.com

generated, then an OK button callback function to acknowledge
choice *

request_attributejtem_event (data flow) =
attribute_list_choice

request_attribute_list_callback (data flow) =
attributejcallback
+ list_callback.
* This request is a combination of a choice for the attribute
list and the name (from list) of the responding application.
Tha attribute callback corresponds to a request for the
attribute list, and the list callback corresponds to the
an application name Grom the selection list being chosen. *

request_auribute_list_event (data flow) =
request_attributejist
+ responder.
* This event is generated after a series of actions. Order
is important. *

request_attribute_list_from_application2 (data flow) =
header
+ responder.
* The responder name is necessary to allow the server to
determine the socket location of the application
responding to the request. The header is used to
instruct the receiving process how to evaluate the
data that follows. *

requesO>uffer_callback (data flow) =
receive_callback
+ list_callback
+ activate_callback
+ active_ok_callback.
* This request consists of a receive data choice followed
by a choice of application from list In order to effect
the request, the activate choice is necessary followed
by an ok.
The receive callback is triggered by a toggle, the list
callback by selection of an application name, the activate
callback by a toggle and the ok button by a pushbutton
callback. *

requestj>uffer_event (data flow) =
request_current_buffer
+ responder
+ activate_exchange.
* This event occurs due to a sequence of actions on the
part of the user. Order is important. *

Appendix A

www.manaraa.com

request_buffer_from_application2 (data flow) =
header
+ responder.
* The responder name is necessary for the server
to determine on which socket the responding application
is connected. The header will allow the client to
receive the signal from the GRIM widget and evaluate
it properly. *

request_conn_client_name (data flow) =
♦request from the GRIM widget to the client application
for his identifying name.*'

respond_to_attribute_list_choice (data flow) =
header
+ altribute_list_choice.
* This is actually a request based on the choice of
an element of the attribute list supplied by another
client. *

responder (data flow) =
application.name.
* name of the application which will respond to a given
request.*

responding_application_name (store) =
responder.
* Contains the name of the application who will respond to
the request generated by the user. *

response_app_out (data flow) =
[server_destined
I transfer_data
I relay_data

3.
* Server destined data is the name of the client application,
while transform data is data from the client application
that must be changed into a formal which is compatible
with the client that requested that data from the
sending application. Relay data is data that does not
need to be transformed, merely needs a new header added
to its message. *

server.destined (data flow) =
[application.name
I close_sock

].
* The name of client applicatio or the client socket
which has just recently been closed to communication. *

Appendix A

www.manaraa.com

socket_data_structure (store) =
socket_descriptor
+ client_name.
* This information is stored for each client connected
to a server. It allows the socket descriptor to be
cross-referenced by client name. *

transfer.data (data flow) =
[buffer_data
I attribute.data

].
* Both of these types of data need to be changed from the
format sent by client application 1 into that of the
requesting client application (application 2). *

w_data (data flow) =
[connection_info
I widget_display_data

].
* w_data is in on of two forms, a request for connection
with the GRIM widget from the owning application, or
data from the client application which will be displayed
in the widget for selection by the user. *

widget_action (data flow) =
header
+ widget_request.
* Based on choices the user makes at the GRIM widget
interface, the widget sends requests for either
the current buffer (geometric data, text, graphs, etc)
from application 2, a list of attributes that
application 2 can supply, or the actual transaction
item from the attribute list. The client name request
is generated by the widget when a new socket connection
is opened. *

widget_display_data (data flow) =
[owning_application_name
I exchange_application_Iist
I attribute.list
I Iist_update_info

].
* widget_displayed_data can be the name of the client
who owns the GRIM widget (displayed above the selection
list in the widget), a list of applications with whom the
GRIM's owner can request data (displayed in the selection
list), or a list of attributes sent from an application
with whom the GRIM's owner can request data. The attribute
list is used to request specific pieces of data (as

Appendix A

www.manaraa.com

defined by the application who will supply them). *

widget_in_data (data flow) =
[list_of_exchange_applications
I attributejist
I list_update

].

widget_out_data (data flow) =
[connection_request
I client_name
I exchange_applicadon_list
I attributejist
I list_updateJnfo

1.
* The application that will own the GRIM widget, sends out
a connection request ONE TIME to establish a communication
link. The widget needs the remaining four pieces of
information to display choices on the widget for the
user. *

widget.request (data flow) =
[widget_request_forward_server
I widget_request client info

1.
* Some of the data passed to the client by the server is
meant to be forwarded on to the server. Other data are
to be supplied by the client itself. *

widget_request_clientJnfo (data flow) =
request_client_app_name.
* At the present time this is the only information the
widget needs from the client application. *

widget_request_forwand_server (data flow) =
[requestJ)uffer_from_application_named
I request_attribute_list_from_application_named
I attribute Jist_choice

].
* Requests for buffer and attribute list must be accompanied
by the name of the responding application, while attribute
list choice knows which application responds because of
the proceeding request for the attribute list The
application named in the request for buffer and
attribute list is also known as the responder. *

Appendix A

www.manaraa.com

APPENDIX B; DATA FLOW DIAGRAMS / P-SPECS

Appendix B

www.manaraa.com

This appendix contains a description of each data flow diagram followed by the data

flow diagrams and process specifications themselves. It is important to remember that

the data entities used in the data flow diagrams are often not found in the structure

charts of the components they represent. This is because there are data in the

integration system which have no way of being named. What this means is that often,

requests for data are determined simply by the major and minor operation codes

contained in the message header, and the reponse to the request is initiated immediately

upon resolution of the opcodes. In view of the fact that request data may not be

explicitly defined in terms of variable names, the data flow diagrams represent requests

in conceptual terms; in other words, a name is given to request data that does not

translate to the component structure charts. This process of giving names to data which

do not explicitly appear elsewhere is what is meant by the term "conceptual data". The

purpose of using conceptual data is to describe the types of messages being passed in

the integration system. Messages in the system all are preceded by a header block

which is used by the receiving process to locate the module in the event handler which

will receive any further data, or will produce data as a direct consequence of the

header. Please note that italicized variables indicate data flows.

Context Diagram

The first diagram created is called the context diagram. The context diagram is defined

as the top-level of a hierarchical set of data flow diagrams. It represents the entire

system in terms of a single process, shown as bubble 0. The diagram is used to

delineate the scope of the analysis and define the system in terms of its inputs and

outputs. The context diagram, in conjunction with the data flow diagrams derived from

Appendix B 137

www.manaraa.com

it, enables the integration system designer to identify the major transactions of a system

in terms of inputs and outputs.

The context diagram of the distributed integration solution shows three data terminators

labeled application 1, application 2, and user. It is important to mention here that only

two applications have been used in these diagrams in order to simplify the data model.

However, the rules developed for two applications can be extended to cover n

applications.

As shown, each application has data it can send to and receive from the integrated

system. The data Jrom_application is defined as the application's name, a list of data

attributes (often called the Client Attribute List (CAL)) that other clients can request,

data corresponding to those attributes, and data representing the current buffer. The

datajo_application can be either buffer data that were requested from a client in the

system, or attribute data (data supplied in response to a choice from the attribute list)

from a client in the integrated system. Note here that it is possible that an application

could send data to the integration server to be transformed in some manner and then

sent back. In this scenario, an application would essentially request data from itself.

This could be useful for applications whose source is not available, since a function

external to the application would appear to be part of the application.

The user of the integrated system is presented with choice_data which is defined as a

sequence of operations the user must perform. The user has the ability to request the

current buffer from an application in the system, the attribute list from an application in

the system, or data which correspond to an item selected from that attribute list. As a

result of evaluating the choice data and taking action, the user creates decisionjlata

Appendix B 138

www.manaraa.com

which is transmitted to the integrated system. Decision data indicate that the user

wants to request buffer data from a specified application, request a list of attributes

from a specified application, or request data based on an attribute list previously

requested.

DFD 0 - Integrated System

As was described in Chapter 4, the term "client" refers to a CAD application,

AP/SOCK Interface, and GRIM widget, while "application" refers only to the CAD

application itself. The term "client interface" implies the combination of the GRIM

interface and the AP/SOCK Interface.

In DFD (Data Flow Diagram) 0, we see the integration server with two client

interfaces connected. These clients interfaces correspond to applications 1 and 2,

shown in the context diagram, as they are embodied in the integrated system. Both

interfaces are identical; therefore, it suffices to only explain one of them indepth. For

this purpose we choose client interface 1.

Client interface 1 receives three inputs: dataJrom_application, decision_data, and

data Jbr_clientl. Data Jbrjclientl consists of a header and client_in_data.

C lientJnjlata can be either data bound for the GRIM widget or data bound for the

application. The data output from the client interface 1 is data jo application,

choice_datat or dataJrom_clientl. Data Jfom _clientl consists of a header and

client_out_data. Clieru_put_data includes all data sent from the client, including

requests for data and connection, as well as responses to requests from the integration

server or another client. The integration server process shows the transition of

dataJrom_clientl to dataJbr_client2 and dataJrom_client2 to dataJor_clientl.

Appendix B 139

www.manaraa.com

DFD 1 - Client Interface

The client interface data flow diagram shows the components of the client application

which enable the CAD application to interface with the user and the integration server.

These two components are the AP/SOCK interface and the GRIM widget. In the

diagram, each component is represented by its own process node.

The socket interface (AP/SOCK) is responsible for receiving dataJor_clientl and

determining if the data should be given to the application or to the GRIM widget.

These decisions are indicated by the data flows data Jbr_application and

data Jorjvidget, The data pertaining to the application are placed in the common data

buffer of the socket interface and the application. This will enable access to the data

by the CAD application. The data which pertain to the GRIM widget, such as

widget_display_data or connection Jnfo, are gathered and sent to the widget for action.

The widget will take some of that data and display it, thus producing choicejkaa for

the user. When the user performs an action based on the choices, he produces

decisionjlata which is sent back to the widget, where it may be combined with other

information to form widget_action. An action for the widget is defined as requests for

data or information generated by the user, or requests for information about the owning

client application. In the socket interface process node, either the input from the

widget or data Jromjipplication will be used to create data Jrom_clientl. The data

produced by the application are stored in common with the socket interface, such as

buffer data, or the CAD application's name. The data leaving the socket interface node

are all data the client can produce, including requests for data or responses to requests.

Appendix B 140

www.manaraa.com

PFD 1.1 -GRIM Widget

This data flow diagram represents the component of the client which enables the user to

interface with the integrated system. Data Jorjvidget is evaluated to be either

widget_display_data or connectionjnfo from the owning client application. Since the

GRIM widget is essentially a server in its design, the term client application is

warranted. Client application implies the CAD application and its system interface

(AP/SOCK) for which the GRIM supplies the user interface. Widget_display_data is

transformed into a format for presentation to the user as choice data. Connectionjnfo

is evaluated and a request is generated which is sent to the client application. When

decision_data is generated by the user, it is transformed into an event. An event or a

request for client application name constitutes a mdget_action.

PFD 1.1.1 - Evaluate Decision

This process generates an event based on decision data received as input. Decision data

breaks down into the following: application jiam e, buffer_request,

activate_data_exchange, request_attributejist, and attribute_choice. The events

generated are request_buffer_event, request_attributejist_event, and

request_attributejtem_event.

PFD 1.1.2 - Determine Widget Action

Based on an event, a callback function is activated. Callbacks are functions which

allow a widget to perform an action when prompted. The execute action process

produces widgetjaction from reqj:lieiu_app_name or callback. Widget_action is

defined as header and widget_request.

Appendix B 141

www.manaraa.com

PFD 1.1.2.1 - Determine Callback Function

Based on the event {request_buffer_event, request_attributejist_event, or

requestjattributejtem_event), a callback function is activated.

PFD 1.1.2.2 - Execute Action

Based on the callback function, a specific header is constructed for the data. The

header (bubble 1) is concatenated with a list item identifier and/or the responding

application name. The resulting information is request_buffer Jrom_application2,

request_attribute_Iist Jrom_application2y or the attributeJist_choice. The header

created in bubble 3 is used to request_client_app_name.

PFD 1.1.3 - Socket Interface

Data_for_widget is stripped of its header and becomes w jtata. W_data is further

determined to be either widget_display_data or connectionjnfo.

PFD 1.1.3.2 - Create and Display Widget

List_updateJnfo tells the process whether to add or delete a selection list item. The

selection list is the one which lists clients from which data can be requested. An item

added to this list is first converted into a motif string. Other kinds of data converted

into a motif string include the owning application's name, initial members of the

selection list (shown by exchange_applicationJist), and attribute list items. Motif

strings are string definitions recognized by the Motif toolkit which can be displayed by

a widget.

PFD 1.1.4.4 - Display in Widget

A Motif list item is evaluated as to whether it should be added to the attribute list or the

selection list. The respective lists are created or added to. The attribute list consists of

items representing choices that correspond to data attributes as defined by an

Appendix B 142

www.manaraa.com

application. The selection list consists of client names. In the widget, toggle buttons

represent the ability to request buffer data or the attribute list from another client in the

integrated system. By combining the selection list choices and the toggle buttons,

choice data for the user are produced.

PE P 1.1.5 - Evaluate Connection Info

Connection information could be either the indication that an active socket has been

terminated (socket closed) or it could be a request for connection from the owning

client application. When a socket is closed, its identifier is deleted from the list of

active sockets kept by the GRIM. This allows the GRIM to detect when its owning

application has been terminated. As a result, it terminates since the CAD application

no longer requires its services. On the other hand, when a new connection is received,

the client application's name is requested for use as displayed information in the

widget.

PFD 1.1.5.3 - Accept Connection

The occurrence of a connection request creates a new socket dedicated to the client

application. This socket descriptor is stored in a socket data structure. The fact that a

new connection has been requested generates the request for the client application's

name.

PFD 1.1.5.3.2 Request Name

The new connection triggers the construction of a header which will, in effect, request

the name of the client application which has just connected to the GRIM.

Appendix B 143

www.manaraa.com

PFD 1.2 - Socket Interface

The socket interface is found in the AP/SOCK which is used as an itermediary to the

integration server by the GRIM and the CAD application. In the data flow

representation of the interface, dataJor_applicationl consists of a header and

clientJnJUua. ClientJnJUua is either widgetJn_data or applicationjnjlata.

W idgetindata consists of a list of exchange clients (for incorporation in the selection

list), an attribute list, or a list update. A list update is an instruction, destined for the

widget, to add or delete a client name from the selection list. Widgetjn_data or

owmng_applicationjiame comprise widget_display_data, which when orred with

connectionjnfo, produces w_data. When a header is added to w_data, it becomes

dataJor_widget.

ApplicationJnJUua is request_application_info or newj>uffer_data.

Request_application_info originated from another client in the integrated system or the

integration server. Newjbufferdata has been sent by a client in the integrated system

in response to a buffer data request generated by this client. Request_applicationJnfo

is application_name_request, buffer_data_request, attribute Jist_request, or

attribute_data_request. These requests can be filled from common_buffer. The

responses to these requests take one of three possible forms: server_destined,

transfer_data, or relayjlata.

Data destined for the integration server include the application's name (for use by the

integration server when cross-referencing socket descriptors by client name) or a closed

socket signal. When a client socket is terminated, the server realizes that the client is

no longer connected to the integrated system. Transfer data are data in the format of

Appendix B 144

www.manaraa.com

the responding client. These data must be either transformed or translated at the

integration server so that they can be sent to the receiving client in the integrated

system. Buffer data and attribute data are considered to be transfer data. Relay data is

the attribute list from the client which must be transferred to the requesting client in the

integrated system.

Response_app_out or request_app_om form the data flow defined as

application_out_data. Request_app_out is widget_requestJorward_server or

initialize jtp p . Widget_request_forward_server are those requests generated by the user

at the GRIM widget which must be relayed by the integration server to another client in

the integrated system for response. These requests include

request_bufferJmm_apptication_named,

request_attribute_list Jromjtpplicationjiam ed, or eutribute_choice. Imtialize_app is

either a request for connection or a request for a list of the clients to be placed in the

widget's selection list. These two requests are only generated during the start-up

phase of the integration client. When a header is added to application_out_datat it is

transformed into data Jrom_clientl.

Widget action is split into widget_request Jorward_server and

widget_request_client_info. The latter is defined as any information the GRIM needs to

obtain from the client application about the client application. At this point the only

information of this type is the client application's name. In response to this request,

the client application sends its name as an identifier to the GRIM.

Appendix B 145

www.manaraa.com

PFD 1.2.1 - Evaluate Data Header

In this process, the data destined for application 1 are stripped of the message header

and the data flow client_in_data emerges. These data are then determined to be either

widget_in_data or application_in_data.

PFD 1.2.6 - Evaluate Data Header

This process performs the same operation as DFD 1.2.1, except that the input and

output data are different. In any case, the process strips the data flow called

widget_action of its header, thereby forming widget_request. The output data are then

determined to be either widget_request Jorward_server or widget_request_clientJnfo.

DFD 2 - Integration Server

This diagram contains two identical but inverse processes. We will only treat the

process on the left, the right-hand process being implied from the other's description.

In the process described, data incoming from client 1 are transformed into data bound

for client 2.

DFD 2.1 - Evaluate Data from Client 1

Data from client 1 are evaluated as either widgetjrequestJbrward server,

initialize_client, or response_app_out. The data forwarded on to the integration server

from client 1 ’s GRIM widget must be transmitted by the server to client 2. These data

include buffer requests, attribute list requests, or attribute list choices which need a data

response. For the first two requests listed, the integration server uses the responding

application's names to locate the socket descriptor of that client at the server. This is

possible because the integration server has a data structure containing socket descriptors

which are cross-referenced with the client name.

Appendix B 146

www.manaraa.com

The data which an application sends in response to a request (response_app_out) are

one of three types: transfer data, server-destined data, or data which need to be relayed

in their current state to another client. Once again, transfer data are data that the server

may need to modify or manipulate in order to send them on to the client who requested

that data. Buffer data and attribute data are of this type. Server-destined data are sent

by a client to the integration server where they are received and evaluated. Examples

of server-destined data are client names which are placed in a socket data structure to

allow cross-referencing with socket descriptors. It is also socket connection

information such as a connection request or a client termination notification. If a client

has closed communications with the server (in the server's view it has terminated), the

socket descriptor and name corresponding to that client are removed from the socket

data structure. All clients in the integrated system who previously had the ability to

request data from the dead client are informed to delete its name from their selection

lists. Data which the client must obtain from the server in order to complete its

initialization phase are called initializejclient. This data flow is defined as either a

connection request or a request for a list of clients from which the client can request

data. In response to a connection request, the integration server requests the client

application's name. Alternatively, if the request from the client is for a list of

exchange clients, the server compiles a list. Either the list of exchange clients, an

attribute list from another client in the system (relay_data), or a list update message

(add or delete client from selection list) forms widget_in_data.

When a header is appended to widget_in_data, new_buffer_data,

application_name_requestt or widget_request Jbrwardjserver, the result is

data_for_client2.

Appendix B 147

www.manaraa.com

DFD 2.1,1 - Evaluate Data bv Header

Data incoming from client 1 are stripped of the header and client_put_data results.

The data flow is then split into widget request Jorward_server, response_app_out, or

initialize,japp.

Appendix B 148

www.manaraa.com

Context-Dlagram;6
lntegration_System

choice

data from applicationiiata from application J Integrated
aaia_io_appiicauon I ^ aaia_io_appncaiion

application 2

User

Appendix B 149

www.manaraa.com

0;3
Integrated System

choice d a ta

c Ho ice data
ilon datailalon data

data fromfor
d a ta ^ f ro m _ a p p llc a t lo ndata fri ipllcatlon

ClientInterface ClientInterface

to a p p lic a tio nd a t a ta ^ e jS p llc a tlo n lata,
clieril

Appendix B 150

www.manaraa.com

1:3
Client Interface 1

GRIM
Widget

Idget
ctloncommon

data data \
for \
application

lata for dlentl

datal from
.application

Socket
Interface
and Handler

cm clientl

Appendix B 151

www.manaraa.com

i . i : i
GRIM W idget 1

declaim data

EvaluateDecision

event ldget_actionidee data
data_forwidget

Create and Display Widget
DetermineWidget
Action

connection.Jnfo

Evaluate
ConnectionInfo

Appendix B 152

www.manaraa.com

Evaluate Decision

attribute 11st choice

activate
.exchange request.

attribute

ist current
_buffe

ctient.applEcatlon
naR lfr-^. test attribute item event

Generate
Event

lest attribute list event

request
evei

Appendix B 153

www.manaraa.com

NAME: U .U ;1

TITLE: Generate Event

INPUT/OUTPUT:
request_current .buffer: data_in
request.attributejist: data_in
request_buffer_event: data_out
activatejexchange: datajn
request_attribute_list_event: data_out
request_attribute_item_event: data.out
attributeJist_choice: datajn
client_application_name: datajn

BODY:
This p-spec is best described using a decision table.

client_application_name

request
buffer
event list

Y

request
attribute attribute
event item

Y
request_buffer_event Y N
aclivate.exchange Y N
attribute_list_choice N N
request_attribute_list N Y

request

event

Appendix B

www.manaraa.com

1.1.2;4
Determine Widget Action

event

Determine
Callback
Function

illback

[get_actlon

Execute
Action

Appendix B 155

www.manaraa.com

1 .1 .2.1 ;2
Determine Callback Function

request_attr(bui e_l!st_event

request_butfer_event

request_attfibute_item

Determine
Callback
Function
Name

request„bo(fer_callback
requestjattrlbuteJ(em _callback

request_attrlbut >Jlst_callback

Appendix B 156

www.manaraa.com

NAME: 1.1.2.1.1;1

TITLE: Determine Callback Function Name

INPUT/OUTPUT:
request.buffer.event: datajn
request_attribute_lisi_event: data_in
request_attribule_item: data.in
request.attributejtem.callback: data.out
request_attribute_list_callback: data_out
request.buffer.callback: data_out

BODY:
This process is best described by a decision table.

request, request, request,
attribute. attribute. buffer.

callbackitem.
callback callback

list.

request_buffer_event
request.attribute.list.event
request.attribute.item

N
N
Y

N
Y
N

Y
N
N

Appendix B

www.manaraa.com

1.1.2.2;7
Execute Action

Build
Header

responding.
appllcatlon.nam e

ader

raq iiest.bufferjron i
_application2

Send
Data ■request attribute

lisTFRnit -
app lica tion

respond.to.
a ttrnu ite .
list_c\olce

lis t .
choice

request.conn
client name

Fequest_cllent_app_name

Appendix B 158

www.manaraa.com

1.1.2 .2.1 ;1
Build Header

n quest_
a tribute
. 1 s t .
c illback

felicallbackrequest
_amilbute

callback

Determine
Header

request,
attribute.list
.Header

Appendix B 159

www.manaraa.com

NAME: 1.1.2.2.U;!

TITLE: Determine Header

INPUT/OUTPUT:
request_attribute_item_callback: datajn
request_attribute_lisi_caUback: datajn
request_buffer_callback: datajn
request_attributejtem_header: data_out
request_attribute_list_header: data.out
requestjmffer.header: data_out

BODY:
This process is best described using a decision table

request, request, request,
attribute. attribute,
item.header list.header

tequest_atlribute_item_callback Y N N
request.attribute.list.callback N Y N
request_buffer_caliback N N Y

buffer.
header

Appendix B

www.manaraa.com

NAME: M.2.2,2;!

TITLE: Send Data

INPUT/OUTPUT:
responding.application.name: datajn
header: data_in
request_buffer_from_application2: data.out
request_attributeJist_from_application2: data.out
respond_to_attribute_Iist_choice: data_out
list.choice: datajn
request.conn_client.name: datajn
request.client_app_name: data.out

BODY:
This process is best described using a decision table.

request. request. respond.to request.
buffer. attribute. attribute. client.
from. list.from. list. applicalic
application2 application2 choice .name

responding.application.name Y Y Y Y
header Y Y Y Y
list.choice N N Y N
request.conn.client.name N N N Y

Appendix B

www.manaraa.com

1.1.3;2
Socket Interface

Read
Header

.data

wldget_dispJay_data

Determine
Data
Type

.connection Info

Appendix B 162

www.manaraa.com

NAME: 1.1.3.1;1

TITLE: Read Header

INPUT/OUTPUT:
data_for_widget: data_in
w_data: daia_out

BODY:
This process is described in structured English.

READ header.

Appendix B

www.manaraa.com

1.1.3.2;2
D eterm in e D a ta T ype

[update
attribute

:ket

EvaluateData lion

innectlon info

Appendix B 164

www.manaraa.com

NAME: 1.1.32.1;1

TITLE: Evaluate Data

INPUT/OUTPUT:
socket_closed: datajn
connecUon.iequest: datajn
list_update_info: data_in
attributejist: data_in
exchange_applicationJist: datajn
owning_application_name: datajn
widget_display_data: data_out
connectionjnfo: data_out

BODY:
This process is best described using a decision table.

widget_
display
data

connection.
info

socket_closed
connection_request
list_update_info
attributejist
exchange_applicationJist
owning_application_name

N
N
Y
Y
Y
Y

Y
Y
N
N
N
N

Appendix B

www.manaraa.com

C re a te a n d D isplay W idget

•oeketd.r* \

'Ring owning a*bhanoe
PllcaiTon_nanfif>lj/^ on~r̂ m»

attribute
llal / '

CreateMotifStringsCreateMotifStrings
Transform Name Into MotifString .

Ii«t update lotif attribute llst-ITem
motifselection listjtame

Add or Delati Ust Item

Display In WidgetItem to delete

Appendix B 166

www.manaraa.com

NAME: 1X4.1;!

TITLE: Transform Name into Motif String

INPUT/OUTPUT:
owning_application_name: daia_in
owning_application_name: data.out
molif_client_name: data .out

BODY:
This process is explained in structured English

READ owning_application_name
TRANSFORM owning_application_name into motif_client_name
PUT owning_application_name into socket_data_structure

NAME: 1.1.4.2;1

TITLE: Add or Delete List Item

INPUT/OUTPUT:
list_update_info: datajn
itemjo_delete: data.out
motifJistJtem: data_out

BODY:
This process is described using structured English

IF list_updateJnfo = ADD
READ listjtem
TRANSFORM listjtem into motif JistJtem

ELSE
READ itemjo_de!ete

END IF

Appendix B

www.manaraa.com

NAME: 1.1.4.3;1

TITLE: Create Motif Strings

INPUT/OUTPUT:
exchange_application_lisl: data_in
motif_selection_list_item: data_out

BODY:
This process is described using pre/post conditions

Precondition:
data elements exchange_application_Iist occur

Postcondition:
produces Motif string motif_selection_list_item for every
member of the list.

Appendix B

www.manaraa.com

1.1.4.4;4
D isplay in W idget

Make ClientSelectionUet
selection llet Item

attribute Hat

ipllcatlon_

Make Attribute Uet]
buffer data attribute lletfrom

“ llel

Evaluate for Dlaplay

Appendix B

www.manaraa.com

NAME: 1.1.4.4.1;!

TITLE: Make Attribute List

INPUT/OUTPUT:
attributejistjtem: datajn
itemjrom.attributejist: data_out

BODY:
This process is described using structured English

DO WHILE attribute.listjtem occurs
ADD attribute.listjtem to the attribute list
DISPLAY attribute JistJtem in attribute list and produce itemJirom.attributeJist

END DO

NAME: 1,1.4.4.2;1

TITLE: Make Client Selection List

INPUT/OUTPUT:
selection JistJtem : datajn
application.name: data_out

BODY:
This process is described using structured English

DO WHILE selectionjistjtem occurs
ADD selectionjistjtem to the selection list
DISPLAY selectionjistjtem in selection list and produce application name.

END DO

Appendix B

www.manaraa.com

NAME: 1.1.4.4.3;!

TITLE: Evaluate for Display

INPUT/OUTPUT:
item_from_attribute_list: datajn
buffer.data: data_in
attribute_list: datajn
appIication_name: datajn
choice_data: data_out

BODY:
This process is described using a decision table.

choice choice choice
_data _data _data

applicationjiame Y Y
buffer_data Y N
attributeJist N Y
itemJrom_attributeJist N N

NAME: 1.1.4.5;1

TITLE: Delete Item

INPUT/OUTPUT:
item_to_delete: datajn

BODY:
This process is described using structured English

DELETE item_to_delete from the widgetqs selection list.

Appendix B

-
<

z
z

z

www.manaraa.com

NAME: 1.1.4.6;!

TITLE: Create Motif Strings

INPUT/OUTPUT:
attributeJist: datajn
motif_attributeJist-Item: data.out

BODY:
This process is described using pre/post conditions.

Precondition:
data elements attributejist occur.

Postcondition:
produce Motif string motif.attributejistjtem for every member of the list

Appendix B

www.manaraa.com

1.1.5;5
E v alu a te C onnection Info

Delete
Socket client sock

connection Info

client name

Determine Connection Info Action

eimnectlon_request

lenl_app_name
Accept
Connection

Appendix B 173

www.manaraa.com

NAME: 1.1.5.1;!

TITLE: Determine Connection Info Action

INPUT/OUTPUT:
connection_info: datajn
socket_closed: data_out
connection_request: data_out

BODY:
This process is described using pre/post conditions

Precondition:
occurrence of connection Jnfo

Postcondition:
either socket_closed or connection.request is produced

NAME: 1.1.5.2;1

TITLE: Delete Socket

INPUT/OUTPUT:
socket_closed: datajn
c!ient_sock: data_out
socket_data_structure: datajn
client_name: data_out

BODY:
This process is described using structured English

DELETE client_sock from socket_data_structure
DELETE client_name corresponding to client_sock from socket_data_structure

NAME: 1.1.5.3.1;1

Appendix B

www.manaraa.com

1.1.5.3;2
Accept Connection

in_requestconro

Create
New Socket

[lent sock

connection socket_data.
structure

[ent_app_name
Request
Name

Appendix B

www.manaraa.com

NAME: 1.1.5.3.i;l

TITLE: Create New Socket

INPUT/OUTPUT:
connection_request: data_in
ciient_sock: data_out
new_connection: data_out

BODY:
This process is described using structured Engjish.

CREATE new socket called client_sock
PUT client_sock into socket_data_structure

Appendix B

www.manaraa.com

1.1.5.3.2;3
Request Name

tew connection

Build
Header
for Name
Request

jaqutist_client
_app_nam e

Send
Header

Appendix B 177

www.manaraa.com

NAME: 1.1.5.3.2.1;1

TITLE; Build Header for Name Request

INPUT/OUTPUT:
new_connection: datajn
header: data_out

BODY:
This process is described using pre/post conditions

Precondition:
data element new_connection exists

Postcondition:
produce data header corresponding to new connection message

NAME: 1.1.5.3.2.2;1

TITLE: Send Header

INPUT/OUTPUT:
header: datajn
request_client_app_name: data_out

BODY:
This process is described using pre/post conditions.

Precondition:
data header occurs

Postcondition:
transmit header which represents request_client_app_name

Appendix B

www.manaraa.com

1.2;7
Socket Interface and Handler

common data atoraga ~

Requaat
Gat Data] tor Wldgetj

inaction ldget_ln_dataInto action
Ip ilc a tlo n l

Evaluate
ffi?i., data/from clleml

Add Head' for ServerapplicajReceive or Relay Data lata 1 irver
b u ffe rla IB

ippllcatlonrequiInfo
common data atoraga '

data Ica tlo n

Appendix B 179

www.manaraa.com

1 .2 .1 ;1
Evaluate Data Header

data_for appllcatloni

Read
Header

c lent In data

Determine
Data
Type

application ln_dataw ldgetjn_data

Appendix B 180

www.manaraa.com

NAME: 1.2.1.1;1

TITLE: Read Header

INPUT/OUTPUT:
dala_for_applicationl: datajn
clientjn_data: data_out

BODY:
This process is described using structured English

READ header

Appendix B

www.manaraa.com

1.2 . 1.2;2
D eterm in e D a ta T ype

x-fdrmedbuffer

attribute

reqi
tribute

.exchange
.applicationsjffer data

appll(illll6n_name_request attribute Hat

update
In data

application in data

Appendix B 182

www.manaraa.com

NAME: 1.2.1.2.1;!

TITLE: Determine Data Type 2

INPUT/OUTPUT:
application_name_request: datajn
buffer_data_request: datajn
attributeJisLrequest: datajn
attribute_data_request: datajn
x-formedJ>uffer_data: data_in
x-formed_attribute_data: datajn
list_of_exchange_app!ications: data_in
attributeJist: datajn
list_update: data_in
widgetjn_data: data_out
applicationJn_data: data.out

BODY:
This process is illustrated using a decision table.

widgetjn application
_data Jn_data

application_name_request N Y
buffcr_data_request N Y
attributeJistjrequest N Y
attribute_datajrequest N Y
x-formedJ)uffer_data N Y
x-formed_altribute_data N Y
list_of_exchange_applications Y N
attribute_list Y N
list_update Y N

Appendix B

www.manaraa.com

NAME: 1.2.2:1

TITLE: Get Data for Widget

INPUT/OUTPUT:
widget_in_data: datajn
connectionjnfo: datajn
owning_applicalion_name: data_in
w_data: data.out

BODY:This process is described using pre/post conditions.

Precondition:
occurrence of connectionjnfo, widgetjn.data, or owning_application_name.

Postcondition:
w.data is produced.

NAME: 1.2.3;1

TITLE: Receive or Relay Data

INPUT/OUTPUT:
applicationJn_data: datajn
new_buffer_data: data_out
request.applicationjnfo: data_out

BODY:
This process is explained through a decision table.

new request
_buffer .application
_data Jnfo

x-farmed_attribute_data Y N
x-formedjniffer.data Y N
application.name.request N Y
buffer_data_request N Y
at tributeJist_request N Y
auribute_data_request N Y

Appendix B 184

www.manaraa.com

NAME: 1.2.4;1

TITLE: Respond to Data Request

INPUT/OUTPUT:
dataJrom_application: datajn
request_applicationJnfo: data_in
response_app_out: data_out

BODY:
This process is described using pre/post conditions.
Precondition:

occurence of iequest_application_info or data_£rom_application.

Postcondition:
response_app_out is produced

NAME: 1.2.5;1

TITLE: Get Data for Server

INPUT/OUTPUT:
response_app_out: datajn
application_out_data: data_out
widget_request_forwaid_server: datajn
initialize.client: data_in

BODY:
This process is described using pre/post conditions.

Precondition:
occurrence of response_app_out, widget_request_forwaid_server, or
initialize_client

Postcondition:
application_out„data is produced.

Appendix B

www.manaraa.com

1.2.6;1
Evaluate Data Header

Read
Header

w ldget_requefetforwardjserver

Determine \ w ldgrtrg!
Data y-------
Type

Appendix B 186

www.manaraa.com

NAME: 1.2.6.1;1

TITLE: Read Header

INPUT/OUTPUT:
widget_aclion: data_in
widget_request: data_out

BODY:
This process is described in structured English.

READ header

Appendix B

www.manaraa.com

1 2 .6 .2;2
D eterm in e D ata T ype

attribute list choice

request buffer _frotn application namM. raquestpHeht_app_name

Determine Data Type 2

wldflet_rel)gest_cIlentJnfowridgat_requeef>forward_aervar

Appendix B 188

www.manaraa.com

NAME: 1.2.6.2.1;!

TITLE: Determine Data Type 2

INPUT/OUTPUT:
request_buffer_from_application_named: datajn
request_attributeJist_from_application_named: datajn
attribute_list_choice: datajn
request_client_app_name: datajn
widgeLrequestJonvard_server: data_out
widget_request_client_info: data_out

BODY:
This process is described by a decision table.

widget_request_ widget_request
forward_server _c!ientJnfo

requestJ)ufferjTom_application_named Y N
Fequest_attribute_list_ftom_application_named Y N
attribute_list_choice Y N
request_client_app_name N Y

NAME: 1.2.7;1

TITLE: Respond to Widget Request

INPUT/OUTPUT:
widget_request_clientJnfo: data_in
common_data_storage: datajn
owning_application_name: data.out

BODY:
This process is described using pre/post conditions.

Precondition:
data element widget_request_clientJnfo occurs

Postcondition:
owning_application_name is produced

Appendix B

www.manaraa.com

NAME: 1.2.8;1

TITLE: Add Header for Widget

INPUT/OUTPUT:

w_data: data_in
data_for_widgei: data_out

BODY:
This process is described using pre/post conditions.

Precondition:
occurrence of w_data.

Postcondition:
data_for_widget is produced by prepending a header onto w_data

NAME: I.2.9;l

TITLE: Add Header for Server

INPUT/OUTPUT:
application_out_data: data_in
daia_from_clientl: data_out

BODY:
This process is described using pFe/post conditions

Precondition:
data element application_out_data occurs.

Postcondition:
data_from_clientl is produced by prepending a header onto application_oul_data.

Appendix B

www.manaraa.com

2;3
Integration Server

dala_from/cllent2

data lok client!

Evaluate Data from Client 2

cllentl
data for_dllant2

Evaluate Data from Client 1

Appendix B 191

www.manaraa.com

2 .1 :4
E v a lu a te D ata from C lient 1

forcllant2

Add Header and Send lo Client 2■buffer data

lget_in_data
w ld g e t_ re q V e e t_ fo rw a rd _ s o rv e r

appllcat[Bn_name_requeat data todm_client1

AcceptConnection Evaluate Data by Headerlion InlttaUmen?

reapon ie_app_out

BuildUat
EvaluateDataType

llet_of_excnMge_eppllcatlone
r e la y d a ta

dined

Transform
Data into New Format

/Determine f-r-J If New Socket or \Closed Socki

Appendix B 192

www.manaraa.com

2 .1 .1;2
Evaluate Data by Header

data_fi»m_clfenti

Read
Header

widgetN»quest_forward_server

out data

Determine
Data
Type

respon$e^app_out

Appendix B 193

www.manaraa.com

NAME: 2.1.1.1;1

TITLE: Read Header

INPUT/OUTPUT:
dala_from_cIientl: datajn
client_out_data: data_out

BODY:
This process is described in structured English

READ header

NAME: 2.1.1.2;1

TITLE: Determine Data Type

INPUT/OUTPUT:
cIient_out_data: datajn
widget_request_forwaid_server: data_out
initialize.client: data-out
response_app_out: datajout

BODY:
This process is described using a decision table.

widget_request_ initialize response.
forward_server _client app_out

request_buffer_from_application_named Y N N
request_attribute_list_from_application_named Y N N
attribute_list_choice Y N N
server_destined N N Y
transfer.data N N Y
relay_data N N Y
connection_request N Y N
request_for_xchg_appJist N Y N

Appendix B

www.manaraa.com

NAME: 2.1.2;1

TITLE: Evaluate Data Type

INPUT/OUTPUT:
response_app_out: datajn
relay_data: data_out
server.destined: data_out
transfer_data: data-out

BODY:
This process is described by a decision table

relay.data server_destined transfer.data

attribute_list Y N N
application_name N Y N
close.sock N Y N
buffer_data N N Y
attribute_data N N Y

NAME: 2.1.3;1

TITLE: Transform Data into New Format

INPUT/OUTPUT:
transfer_data: datajn
newj>uffer_data: data_out

BODY:
This process is described using pre/post conditions.

Precondition:
data element transfer_data occurs.

Postcondition:
transform or translate transfer_data into new_buffer_data.

Appendix B 195

www.manaraa.com

NAME: 2.1.4;1

TITLE: Determine if New Socket or Closed Socket

INPUT/OUTPUT:
server_destined: datajn
list_update: data_out

BODY:
This process is described in structured English

IF server_desdned = application_name
Iist_update = ADD

ELSE
list_update = DELETE

END IF

NAME: 2.1.5;l

TITLE: Data Destined for Widget

INPUT/OUTPUT:
relay_data: datajn
list_of_exchange_applications: data_in
list_update: data_in
widget_in_data: data_out

BODY:
This process is described by pre/post conditions.

Precondition:
data element relayjdata, list_update, or lisl_of_exchange_applications occurs.

Postcondition:
produce widget_in_data.

Appendix B 196

www.manaraa.com

NAME: 2.1.6; 1

TITLE: Determine Init Request Type

INPUT/OUTPUT:
initialize_client: datajn
request_for_xchg_app_list: data_out
connection_request: data_out

BODY:
This process is described using pre/post conditions.

Precondition:
occurrence of initialize_client

Postcondition:
production of request_for_xchg_app_list or connectionjequest based
evaluation of input.

NAME: 2.1.7;1

TITLE: Build List

INPUT/OUTPUT:
iequesUor_xchg_appJist: datajn
list_of_exchange_applications: data_out

BODY:
This process is described using pre/post conditions.

Precondition:
occurrence of request_for_xchg_app_list.

Postcondition:
production of a list_of_exchange_applications.

Appendix B

www.manaraa.com

NAME: 2.1.8; 1

TITLE: Accept Connection

INPUT/OUTPUT:
connectionjrequest: datajn
application_name_request: data_out

BODY:
This process is described using pre/post conditions.

Precondition:
data element connection_request occurs.

Postcondition:
produce application_name_request.

NAME: 2.1.9;1

TITLE: Add Header and Send to Client 2

INPUT/OUTPUT:
widget_request_forward_server: datajn
new_buffer_data: datajn
widgeUn_data: data_in
applicationjname_request: datajn
data_for_client2: data.out

BODY:
This process is described using pre/post conditions.

Precondition:
data element newjbuffer, widgetJn_data, application_name_request,
or widget_request_forward_server occurs.

Postcondition:
add header to produce data Jor_client2

Appendix B

www.manaraa.com

2 ,2,5
Evaluate Data from Client 2

for cllentl

Add Header and Send to Client 1 .le r d e t r

IgetJnjfala
wMgat_reql forward server

•pplfcaUef)_n«me_requeet datafmn client2

AcceptConnection Evaluate Data by Headerlioncon)
Initial

reapon to_app_out

Build
Uat

Hst_of_excmnge_appllcatJons
data

s e r v e r J d e s t ln e d

Data
Destined for Widget Transform Data Into New Format

lelermlne
Socket or Closed Sock)

Appendix B 199

www.manaraa.com

2.2.1 ;2
Evaluate Data by Header

data_from dlent2

ReadHeader

wldgel_rbaueat_fo(ward_server

dleiit out dele

ip_out

Appendix B 200

www.manaraa.com

APPENDIX C; GRIM STRUCTURE CHARTS / M-SPECS

Appendix C

www.manaraa.com

GRIM Widget;9 GRIMlWidget

GRIM

Sock

main window, mwcallback)
menu t5,“cUon4/ formlA «*|ectlofc-

*r /L main 19 window V b°*ti / iP window i * window \ _____
SalactloJ iMake OtHerBox T Stuff r

parant Make Ma*uBar TMako Main
Window SotWorkPrc e

g_aaloct_IO(

road maak

t ic

aalaci

Appendix C 202

www.manaraa.com

MakeMenuBar;2
No title

Make
Menu
Bar

main windowmenu_bar 6

MakeMenuBar

menu n
-pane V

CreateMenu
Buttons

Appendix C 203

www.manaraa.com

MakeSelectionBox;2
No title

Make
Selection
Box

eeleetion_box 6

mein window

main window

d 'lls t

UnmanageStuffMakeSBox

Appendix C 204

www.manaraa.com

MakeOtherStuff;2
No title

OtherStuff

iform

row column

•tala
o»

typeo*
A frame callbackselection box frame row_columnform̂ toggfeA

form
CreateToggleMakeForm MakeRC

Appendix C 205

www.manaraa.com

g e v a l_ s e l ;3
N o titfe-

g_eval_sal

g„eval_se)

g_rd_m»gg_askjd

header
vP* read aockheader

g_ew_o|
build heads

Appendix C 206

www.manaraa.com

g_«w_op

read aocfc

hsa derma], opcode_2

hsadar.mlnl opcode_0 T header.mln opcodeJ3
y hraderalzeJn_bytee\<}read_soek
o raad_aoek

add_na4e

jy HaadaMl»_fn_byta ̂̂ read_aock

^headeradd 10 llal~ '

Appendix C 207

www.manaraa.com

g_add_name;2
No title

g add
.nam e

^ header.slzejn.bytes

o read sock

read sock

name new X
string Hname size

6 new.strlng

read name set_args.
create label

Appendix C 208

www.manaraa.com

g_add_toJist;3
No title

a d d t o

y read_sock

q header

read sock

name_slze
name P /

q, name

read name g j ju t j n j l s t

g_add_to_IIst

Appendix C 209

www.manaraa.com

o oe t new list:2
No title

read aock
n . item_name

^ item_name^^*item name

b put in Hat

get_i liat

Appendix C 210

www.manaraa.com

g _ m a k e _ a ttr ib jis t;3
N o title

g make
a tlr lb '
Hat ~

read sock
gmake attrlb Hat make attrlb list cillbacfu

read aock
name alze ma_callback)Jaiilletlni /_board 0

jjgSS*/
^ / 4 llstjwldget̂ “ ""P-1

responder position
text2

makejlst.
widget make text AddToUstread nami read nami

/cfok \ lb cancel
bulletln_board̂ / b|JHeUn\

Appendix C 211

www.manaraa.com

ma_callbacks;2
No title

macallback*

aock

cancelcallbackattrlbjlst Item callback

ma_callbaeke

ok callback

kllljhe.
bulletin
board

Appendix C 2 12

www.manaraa.com

m w callb ack s ;1
N o Title

cal

active o k
c a l lb a c k '

sa

Appendix C 213

www.manaraa.com

NAME: GRIM.4

TITLE: GRIM main module

PARAMETERS:
sockets: data_out
num.socks: data.out
listnum: data_out
listjtem: data.out
my.client: data.out

LOCALS:
Sock * socket used to listen for connections41

grimmy * server internet information *
one
grimjen

BODY:
/»
Source Code Filename: GRIM.c
Special Considerations: NONE
Purpose:
This is the main module of the GRIM widget
interface. Its purpose is to establish a socket
to listen for a connection request from the owning
client and to make a widget for display.
This module is generic EXCEPT for the pathname
which is defined at the top of the program. This
pathname identifies a unique UNIX socket which
must match the pathname set by the owner client.
Belongs to GRIM

#define _BSD
înclude <stdio.h>

include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <sysAoctl.h>
#include <ermo.h>
#inctude <sys/un.h>
#include <X1 l/StringDefs.h>
înclude <Xm/Xm.h>

^include “.7mysock2.h"
tfdefine pathname “../execs/s.grimsock”
intsockets[2];
int num.socks;
int listnum;
XmSlring list_item[SO];
/•char client_list[50][50];*/

Appendix C

www.manaraa.com

char *my_client;
void make_widgetO;

void mainQ

int Sock;
struct sockaddr_un grimmy;
static int one = 1;

I* socket on which listening occurs */
I* server internet information */
f* set as a constant*/

int grimjen;
listnum = 0;

/* — open socket to listen on and use a stream connection — */
Sock = socket(AF_UNIX, SOCK_STREAM,0);
if (Sock < 0)
{
perror(‘ ‘server: socket”);
exit(-3);
}
sockets[0] = Sock;
num_socks = 1;

/*— clear the server structure— */
bzero((char *)&grimmy, sizeof(grimmy»;
grimmy.sun_family = AFJJNEX;
strcpy(grimmy.sun_path, pathname);
grimjen = strlen(grirnmy.sun_path) + sizeof(grimmy.sun_family);

f* — bind the Sock to the server */
if (bind (Sock, (struct sockaddr *)&grimmy, grim len) < 0)
{
penorC'servenbind”);
exit(-3);
}

listen (Sock, 5);
make_widgetO;
unlink(pathname);
) f* — end main module — */

NAME: g_make_widget;5

TITLE: GRIM g_make widget

PARAMETERS:
receivejnfojoggle: data_out * Widget *
activatejoggle: data_out * Widget *
client_attrib_toggle: data_out * Widget *

Appendix C 215

www.manaraa.com

selection_box: daia_out * Widget *
main_window: data.oul * Widget*
bulletin: data_out * Widget *
row_column: data.out * Widget *
label_widget: data_out * Widget *
evenLgenerator: dala_out* int *
active_switch: data_out * int *
o_active_one: data_out * Widget *
recievejd: data_out * Widget *
frame: data_out * Widget *
list: data_out * Widget *

LOCALS:
parent * top level widget *
menu_bar * widget *
form * widget *

BODY:
z*™ --------------- — =
Source Code Filename: g_make_widget.c
Special Considerations: NONE
Purpose:
To create a widget for displaying choice
data to the user. The widget consists of a
main window with a menu bar at the top containing
choices to reset the list and to exit the widget.
Beneath the menu bar is a selection list containing
the applications in the integrated system with
from which the owning client (client who owns the GRIM
widget) can request data.
Included in this m-spec is the code for make.widget and
all modules beneath it with the exception of those
stemming from the work proc declared in the main
portion of make_widget Those functions will be
listed separately in other m-specs. The callbacks
for the make_widget routines are also included here.
Belongs to GRIM

#include <stdio.h>
#defme FALSE 0
#define TRUE 1
#define size_of_name SO
^include <sys/un.h>
#defme pathname “,yexecs/s.grimsockH
#include <X11/Intrinsic.h>
#include <X11/Shell.h>
#include *\./mysock2.h”
#include <Xm/Xm.h>
^include <Xm/CascadeB.h>
#include <Xm/DialogS.h>

Appendix C

www.manaraa.com

#include <Xm/BulletinB.h>
#include <Xm/Command.h>
#include <Xm/FileSB.h>
include <Xm/Form.h>
Ainclude <Xm/Frame.h>
#include <Xm/MainW.h>
include <Xm/MessageB,h>
Ainclude <Xm/PushB.h>
include <Xm/PushBG.h>
Ainclude <Xm/RowColumn.h>
#include <Xm/SelectioB.h>
Ainclude <Xm/ToggleBG.h>
Aincludet<Xm/ToggleB.h>
#include <X1 l/MwmUtil.h>

static Widget MakeMainWindowO;
static Widget MakeMenuBarO;
static void CreateMenuButtonsO;
static Widget MakeSelecdonBoxO;
static Widget MakeSBoxO;
static Widget MakeSListO;
static Widget MakeOtherStuffO;
static Widget MakeDialogBoxO;
static Widget CrcateToggleO;
static Widget MakeFormO;
static void UnmanageStuffO;
static Widget MakeRCO;
static Widget MakeRadioO;
static XmString StrtXmStringO;
static Widget GreateScrolledListO;
static Widget create_active_diaIogO;
static Widget MakeActiveDialogO;
static Widget MakeLabelO;
static void SetLabelO;
static void tell_xchg_client();
static void send_attrib_msgO;
void g_select_loopO;

extern int listnum;
extern XmString list_item[50];
extern int sockets[2];
extern int num_socks;
extent char *my_client;

/*---------------------- GLOBAL DECLARATIONS
Adefine MENU_HELP 200
Adeline MENU.EXIT 201
Adefine MENU.RESET 202
Adefine SEND.EVENT I
Adefine RECEIVE_EVENT 2
Adefine ACTTVATEJEVENT 3

Appendix C

www.manaraa.com

ttdefine ATTRIBUTE.EVENT 4
#deflne NONE 0

static Widget receive_info_toggle;
static Widget activate_toggle;
static Widget cIient_attrib_toggle;
Widget selection_box;
static Widget main_window;
static Widget list;
static Widget bulletin;
Widget row.column;
Widget label.widget;
int event_generator,
int active_switch;
Widget o_active_one;
char *receive_id;
static Widget frame;

I*— callback for the menu bar selection “actions” — */
void menu_pane_callback(w, clientjdata, call_data)
Widget w;
caddr_t client_data, calLdata;
{
Argargs[10];
intn;
XmAnyCallbackStruct *cbstruc = (XmAnyCallbackStruct *) calLdata;

switch((int) client_data)
{

case MENU_EXTT:
printfC*EXmNG THE SERVER PROGRAM^");
unlink(pathname);
exit(O);
case MENU_RESET:
n = 0;
XtSetArg(args[n], XmNset, FALSE); n++;
XtSetArg(args[n], XmNindicatorOn, TRUE); n++;
XtSetValues(receive_info_toggle, args, n);
XtSetValues(activate_toggle, args, n);
XtSetValues(cIient_attrib_toggle, args, n);
break;

default:
printf(“unexpected tag in mcnu_pane_callback V);

break;
)

}
I*---
I* create the callback for list action--------------------------------- 4
void list_callback(w, client_data, calLdata)
Widget w;

Appendix C 218

www.manaraa.com

caddr_t client_data;
caddr_t calLdata;
{
extern Boolean activate;
int size_of_client = SO;
char ̂ string;
XmListCallbackStruct *list_data = (XmListCallbackStruct *)call_data;
int n;
Arg args[10];

/* — put chosen list item into the clientjd — */
XmStringGetLtoR (list_data->item, XmSTRING_DEFAULT_CHARSET, &string);
if (event_generator == RECEIVE_EVENT)
(

receive_id =(char *) malloc(size_of_dient);
receivejd = strcpy(receive_id, string);

) else if (event_generator = ATTRIBUTE_EVENT) {
send_attrib msg(string);

)
event_generator = NONE;

/* — now determine if it is for the sender or the receiver — */
/* — enable the send and receive and activate radio buttons — */
if (‘receive id != NULL)
{

n = 0;
XtSetArg(args[n], XmNset, FALSE);
XtSelValues(receive_info_toggle, rugs, n);
XtSetValues(activate_toggle, args, n);
XtSetSensitive(receive_info_toggle, TRUE);
XtSetSensitive(acdvale toggle, TRUE);

1
return;

)/*--*/
/* — add the callback for the work proc — */
Boolean select_callback(client_data)
caddr.t client_data;
{
/* — call the select Joop module when no event in widget queue — */
selectJoopO;
retum(FALSE);

}
!*--V
t*-- * /
void receive_callback(w, client_data, toggle.strucl)
Widget w;
XmToggleButtonCallbackStruct *toggle_struct;
{
f* — if the new state of the toggle is true, then show available list—*/
if{ toggle_struct->set != FALSE)
(

Appendix C

www.manaraa.com

event_generator = RECEIVE_E VENT;
)
return;

}
r -
void attribute_callback(w, client_data, togglc_struct)
Widget w;
XmToggleButtonCallbackStruct *toggle_struct;
{
f* — if the new state of the toggle is true, then show available list—*/
if(toggie_struct->set != FALSE)
(

event_generator = ATTRIBUTE_E VENT;
J
return;

}
(*--
void activate_callback(w, client_data, toggle_struct)
Widget w;
caddr_t client_data;
XmToggleButtonCallbackStruct *toggle_struct;
(
/* — if the new state of the toggle is true, then show available list—*/
if(toggle_struct->set != FALSE)
(

f* — need to create a dialog widget that lets the user accept choice */
o_active one = create_active_dialog(row_column, receivejd);

}
return;

}f*------------------------- -------------------
void active_cancel_callback(w, client_data, calLdata)
Widget w;
caddr_t client_data, calLdata;
{
/* — do nothing — */
printfC'in active_cancel doing absolutely nothingSn");

)

void acdve_ok_callback(w, ciient_data, call_data)
Widget w;
caddr_t client_data, call data;
{
active_switch = TRUE;
tell_*chg_client(receivejd);

}
!*■
voidg_make widgetO
(
Widget parent;

Appendix C 2 2 0

www.manaraa.com

Widget menu_bar,
Widget form;
event_generator = 0;

/* — initialize the top shell — */
parent = Xtlnitialize(“make_widget.c”,

“X.GRIM”,
NULL,
0,
NULL,
0);

/* — make the main window for the widget — */
main_window = MakeMainWindow(parent);

I* — make the menu bar in the main window — */
menu_bar = MakeMenuBar (main.window);

/* — make a selection box — */
selection.box = MakeSelectionBox (main_window);

!* — make other things, like buttons, to put in the box — */
form = MakeOtherStuff (selecdonjbox);

/* — set up the main window — */
XmMainWindowSetAreas (main^window, menu_bar. NULL, NULL, NULL selection.box);

/* — set up the work procedure for branching — */
/* — add a work proc to keep the select polling — */
SetWorkProcO;
XtRealizeWidget(paient);
XtMainLoopO;
return;

)
— ^ - = = = = = = = = = = ; ; = = = = = = = = = s = a = = = = =

static Widget MakeMainWindow(Widget parent)
I
intn;
Arg args[10];
Widget m.window;

n = 0;
XtSetArg (args[n], XmNscrollingPolicy, XmAPPLICATION.DEFINED); n++;
XtSetArg (args[n], XmNwidth, 275); n++;
XtSetArg (args[n], XmNheight, 375); n++;
m.window = XmCreateMainWindow (parent, “main.window”, args, n);
XtManageChild (m.window);
relum(m_window);

}
/•=
static Widget MakeMenuBar(Widget widget)
{

Appendix C 221

www.manaraa.com

Widget menujbar,
Widget cascade;
Widget menu_pane;
Arg args[10];
intn;

/* — create the menu bar on the main window(widget) — */
n = 0;
menu_bar= XmCreateMenuBai(widget, “menu_bar”, args, n);
XtManageChild(menu_bar);

/* — create pulldown menu off of the menu bar — +/
n = 0;
menu_pane = XmCreatePulldownMenu(menu_bar, "menu_pane”, args, n);
CieateMenuButtons(menu_pane);
n = 0;
XtSetArg (args[n], XmNsubMenuId, menu_pane); n++;
cascade = XmCreateCascadeButton (menu_bar, “Actions”, args, n);
XtManageChild(cascade);
retum(menu_bar);

)/* ssagm M M aag==s====s=======================*/
void CreateMenuButtons(Widget menu_pane)
{
Widget button;
intn;

n = 0;
button = XmCreatePushButton (menu_pane, “Reset”, args, n);
XtAddCallback (button, XmNactivateCallback, menu_pane_callback, MENU_RESET);
XtManageChild (button);
n = 0;
button = XmCreatePushButton (menu_pane, “Exit", args, n);
XtAddCallback (button, XmNactivateCallback, menu_pane_callback, MENU_EXIT);
XtManageChild (button);
return;

)f*==========_— ---- = = = = = = = = * /
static Widget MakeSelectionBox (Widget widget)
{
Widget text;
Arg args[10];
int n;
Widget hsbar, vsbar;
Widget s_box;
XrmValue pixeLdata;

/* — create the selectionne box — */
s_box s MakeS Box(widget);

I*— register callbacks for selection box list— */

Appendix C

www.manaraa.com

list = MakeSList(s_box);

/* — set the colors of the recessed widgets — */
if (DefaultDepthOfScreen(XDefaultScreenOfDisplay(XtDisplay(widget))) >1)
{

text = XmSelectionBoxGetChild (s_box, XmDIALOG_TEXT);
XtSetArg (args[0], XmNhorizontalScrollBar, &hsbar);
XtSetArg (args[l], XmNverticalScrollBar, &vsbar);
XtGetValues (XtParent(list), args, 2);
_XmSelectColorDefault (s_box, NULL, &pixel_data);
XtSetArg (args[0], XmNbackground, *((Pixel *) pixel_data.addr));
XtSetValues (list, args, 1);
XtSetValues (text, args, 1);
XtSetValues (hsbar t̂rgs, 1);
XtSetValues (vsbar^rgs, 1);

}

/* — unmanage children that werenqt needed — */
UnmanageStuff(s_box);
XtManageChild(s_box);
retum(s_box);

}
/* = = === ==== = = = = =
static Widget MakeSBox(Widget widget)
{
int i, n;
Argargs[10];
Widget s_box;
XmString charset = (XmStringCharSet) XmSTRING_DEFAULT_CHARSET;
XmString new_string;

f* — clear out the list item array — */
listnum = 0;
for (i = 0; i < 50; i++)
{

list_item[i] = XmStringCreateLtoR (NULL, charset);
}

f* — set list header text— */
new.string = XmStringCreateLtoR(“Exchange Selections for charset);

J* — create the selection box — */
n = 0;
XtSetArg (args[n], XmNshadowThickness, 1); n++;
XtSetArg (args[n], XmNshadowType, XmS H ADO W_OUT); n++;
XtSetArg (args[n], XmNtexlString, list_item[0]); n++;
XtSetArg (args[n], XmNlistltems, listjtem); n++;
XtSetArg (args[n], XmNlistltemCountJistnum); n++;
XtSetArg (args[n], XmNlistLabelString, new.string); n++;
XtSetArg (args[n], XmNselectionLabelString,

XmStringCrcateLtoR(“Current Exchange Selection", charset)); n++;

Appendix C

www.manaraa.com

s_box = XmCreateSelectionBox(widget, “selcciion_box", args, n);
reuxm(s box);

)
/* ' ■--.1--- r------------------------- ===m8a8ss8ssg========
static Widget MakeSList(Widget selectionjxm)
{
Widget s_list;

P — add a list to the field of the selection box — */
sjist = XmSelectionBoxGetChild (selection_box, XmDIALOG_LIST);

P — add callbacks for the list — */
XtAddCallback (s_list, XmNbrowseSelectionCallback, list_callback, NULL);
XtAddCallback (s_list, XmNdefaultActionCallback, list_callback, NULL);
retum(sjisl);

)
P ==== ======= — = = = = = =
static void UnmanageStuff(Widget selecdon_box)
(
inti;
Widget kid[5];

P — unmanage children not needed by this selection box — */
i = 0;
kid[i++] = XmSelectionBoxGetChild (selection.box, XmDIALOG.SEPARATOR);
kid[i++] = XmSelectionBoxGetChild (selection_box, XmDIALOG_OK_BUTTON);
kid[i++] = XmSelectionBoxGetChild (seIection_box, XmDIALOG_CANCEL_BUTTON);
kid[i++] = XmSelectionBoxGetChild (selection.box, XmDIALOG_APPLY_BUTTON);
kid[i++] = XmSelectionBoxGetChild (selection_box, XmDIALOG_HELP_BUTTON);
XtUnmanageChildren (kid, i);
return;

}
P — - ---------J= = ^ ^ ^ = = === = = S m ==a==== =BSg=S!
static Widget MakeOtherStuff (Widget widget)
{
Widget box;
Arg aigs[10];
int n;
XmString label_string = NULL;

P — create outer form box — */
box = MakeForm(widget);

P — create radio box and dialog style toggles */
frame = MakeRadio(box);
rowjcolumn = MakeRC(framc);
receive_info_toggle = CreateToggle(row_column,

“receive data",
“CLIENT FROM WHICH TO RECEIVE DATA",
FALSE,
XmN_OF_MANY,

Appendix C

www.manaraa.com

receivejcallback);

client_attrib_toggle = CreaieToggle(row_column,
"client attribute”,
“CLIENT ATTRIBUTE LISTING”,
FALSE,
XmN_OF_MANY,
attribute_callback);

acdvate_toggle = CreateToggIe(row_column,
“activate",
“ACTIVATE EXCHANGE”,
FALSE,
XmN_OF_MANY,
activate_callback);

XtSetSensitive(activate_toggle, FALSE);
rclum(box);

)
/
♦= 3SSSmaaassBag= = m a ssas= _ ^ = ============s=!====ss===*/
static Widget MakeForm(Widget widget)
{
i n t n ;
ArgargsUO];
Widget box_form;

I* — create outer form — */
n = 0;
XtSetArg(args[n], XtnNy, 300); n-H-;
XtSetArg(args[n], XmNx, 0); n++;
XtSetArg(args[n], XmNwidth, 200); n-H-;
XtSetArg(args[n], XmNheight, 100); n++;
box_form = XmCreateForm (widget, “outerjbrm", args, n);
XtManageChild(box_form);
return(box_form);

}
/

static Widget MakeRadio(Widget box)
{
intn;
Argargs[10];
Widget radio_frame;

I* — create radio box */
n = 0;
XtSetArg (args[n]t XmNshadowType, XmSHADOW_ETCHED_IN); n++;
XtSetArg (args[n], XmNIeftAttachment, XmATTACH_FORM); nn-;
XtSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n n ;
XtSetArg (args[n], XmNtopAttachment, XmATTACH_PORM); n++;

Appendix C 225

www.manaraa.com

XtSetArg (argsfn], XmNbottomAttachment, XmATTACH_POSITION); n++;
XtSetArg (args[nj, XmNbottomPosition, 75); n++;
radio_frame = XmCreateFrame (box, “frame”, args, n);
XtManageChild (iadio_frame);
retum(radio_frame);

)
/♦_̂ 1̂ ^ _ ^ =======„ ;===================^ =̂ =========================»/
static Widget MakeRC(Widget frame)
{
intn;
Argargs[10];
Widget rc;

/* — make row column widget for toggles — */
n = 0;
XtSetArg(args[n], XmNorientation, Xm VERTICAL); n++;
rc = XmCreateRowColumn (frame, “row.column", args, n);
XtManageChild(rc);
retum(rc);

)
/
* *j
Widget CiealeToggle(paient, name, message, state, type, callback_func)
Widget parent;
char nameG;
char messaged;
Boolean state;
int type;
void (*callback_func)0;
[
Widget toggle.widgeu
XmString motif_string;
XmString Sti2XmStiingO;
Arg args[10];
int n;

I* — change message into motif string — */
motiijstring = Str2XmString(message);
n = 0;
XtSetArg (args[n], XmNlabelString, motif_string); n-H-;
XtSetArg (args[n], XmNindicatoiType, type); n++;

/* — try XmNindicatoiOn with True and False— */
XtSeiArg(args[n], XmNindicatoiOn, TRUE); n++;

f* XtSetArg(args[n], XmNindicatoiOn, FALSE); n++;*/
XtSetArg(args[n], XmNset, state); n++;
toggle.widget = XmCteateToggleButton(paient, name, args, n);
XtManageChild(toggIe_widget);

Appendix C 226

www.manaraa.com

f* — add a callback for when the value is changed — */
XtAddCallback(togglejwidgei, XmNvalueChangedCallback, callback_func, NULL);
XmStringFiee(motif_string);
retum(toggle_widget);

)
/* = = = = = = = = = = = = = r̂ gmffmm=========gSBgB=
f* ------------------ ^ = g a m s = » m « s ^ a^ = = = = sssa= = = =
SetWorkProcO
{
Boolean work_state = FALSE;

if(work_state = FALSE)
(

work_state = XtAddWorkProc(select_callback, NULL);
printf(“starting select callback \n");

)
return;
}
/* = = = = = = = = = = = = = = = = : =„ m s B as „ ta=========g!
XmString Sti2XmString (string)
char ̂ string;
{
XmString motif_string;

/* — create motif string — */
motif_string = XmStringCreateLtoR(string,
Xm STRING_DEFAULT_CHARSET);
retum(motif_string);

)
r = = = = = = ---
i* = = = = ^ _ , -- ■ ------ ------------ -------..---------------------- = = = = =
Widget create_active_dialog(Widget parent, char receiver^)
{
Widget active.widge, dead_widget;
active_widge = MakeActiveDialog(parent, receiver);

/* — get rid of the help button — */
dead.widget» XmMessageBoxGelChild(active_widge, XmDIALOG_HELP_BUTTON);
XtUnmanageChild(dead_widget);

f* — set up callback on cancel button — */
XtAddCallback(active_widge, XmNcancelCallback, active_cancel_callback, NULL);

f* — set up callback on ok button — */
XtAddCallback(active_widge, XmNokCallback, active_ok_cal!back, NULL);
retum(active widge);

J
j*_--- */
static Widget MakeActiveDialog(Widget parent, char receiverQ)
(

Appendix C

www.manaraa.com

char *new_receive_string;
XmString motif^string, Str2XmStringO;
int n;
Arg args[10];
Widget a_widge;

f* — concatenate the sender and receiver with messages — */
new_receive_string = strcatf'client from whom data received is “, receiver);
printf(“c_a_d: s treat new_receive_string %s\n", new_receive_string);
motif_string = Str2XmString(new_ieceive_string);

/* — create widget— */
n = 0;
XlSetArg(args[n], XmNmessageString, motif_string); n-H-;
a.widge = XmCreateInformationDialog(paient,

“active_widget",
args,
n);

XtManageChild(a_widge);

/* — reset string message — */
new_receive_string = strcpy(new_receive_string, "client from whom data is requested “);
free{new_receive_string);
XmStringFree(motif_string);
retum(a_widge);
1
r ---*/
void tell_xchg_client(char "'name)
t
HEADER header,

/* — send a message to the client to tell server which exchg — */
header.size_in_bytes = size_of_name;
headcr.maj_opcode = 1;
header.min_opcode = 1;

f* — send it— */
if (write(sockets[l], Aheader, sizeof(HEADER)) < 0)
t

peiror(“tell_xchg_client: write header”);
exit(l);

}
printf(“tell_client: the name requested is %s\n”, name);
if(write(sockets[l], name, size_of_name) < 0)
{

perrorC‘teIl_xchg_cIiem: write name");
exit(l);

}
return;
} /* — end tell_xchg_client — */
/ * */

Appendix C

www.manaraa.com

void send attrib_msg(char ’name)
t
HEADER header,

header.size_in_bytes = 0;
header.maj_opcode = 1;
header.min_opcode = 3;
printf(“maek_widget: sending message to client for attributes Nn");

/*— send it— *1
if (write(sockets[l], &header, sizeof(HEADER)) < 0)
{

perror(“sam: write header");
exit(l);

}
printf(“sam: the name requested is %sW\ name);
if(wrile(sockets[l], name, size_of_name) < 0)
{

perror(“sam: write name");
exit(l);

)
return;
} /* — end send_attrib_msg.c — */

NAME: g_select_loop;5

TITLE: GRIM g_select_loop

PARAMETERS:
LOCALS:
BODY:

 r - " =

Source Code Filename: g_seIect_Ioop.c
Special Considerations: NONE
Purpose:
To check whether or not a signal has been detected
on a socket
Belongs to GRIM
--------------------------------T ------------------------------- = = = — = = * /

/
♦= = = = =s=B5g : = = == = SS=== S S = = = */
t *
g_select_loop.c
Function: sets the select mode on for the server to screen incoming connections

Variables: sock - socket info

Appendix C 229

www.manaraa.com

Coded by: Michele Grieshaber
Date: 08/28/91
*/
/

— — — — * I
Adeline _BSD
Adefine TRUE 1
Adefine FALSE 0
Ainclude <stdio.h>
Ainclude <sys/types.h>
Ainclude <sys/socket.h>
Ainclude <sys/time.h>
Ainclude <nednet/in.h>
Ainclude <netdb.h>
Ainclude <ermo.h>
Ainclude ".7mysock2.h”

/* — supporting routines — */
void g_eval_sel0;
f* — end supporting routines — */

extern int sockets[2];
extern int num_socks;

void g_selectjoop0
{
fd_set read_mask;
struct timeval to;
int i, rc;
int lsock;
extern int ermo;

I* mask which filters sockets for reading */
I* time structure for select timeout */
I* ro is the return code variable */
/* product of a socket sort— largest sock*/
/* error number for debug purposes */

/*— clear the read mask for the select— */
FD_ZERO(&read_mask);

f* — compare the mask against all available sockets------------------- *1
/*— also keep track of the largest socket value for later use------*/
/* — but to do that, set sock initially to zero------------------------- */
lsock = 0;
for (i = 0; i < num.socks; i++)

FD_SET(sockets[i], &read_mask);
if<sockets[i] > lsock)
{

lsock = sockets[i]; f* sorting lsock for nfds arg */
)

)/* — end for nsocks — */

f* — set the timeout values for the select — */
bzero((ctiar *)&to, sizeof(to));
to.tv_sec = 0;

Appendix C 230

www.manaraa.com

/* — hang out in the select— */
rc = select(lsock+l, &read_mask, (fd_set *)0, (fd_set *)01 &to);
if(rc < 0)
{

penor(“select");
exit(l);

) else if (rc > 0) {
/*— evaluate the response to select if any — */
g_eval_sel(read_mask);

} I* — end if rc — •/

return;
} /* — end g_seleci_loop.c — */

NAME: g_eval_sel;6

TITLE: GRIM g_eval_sel

PARAMETERS:
read_mask: data+control_in
LOCALS:
BODY:
/* = = = = = = = .
Source Code Filename: g_eval_sel.c
Special Considerations: NONE
Purpose:
To evaluate the signal which occurred on a socket.
Belongs to GRIM
--------------- T.1V----------------------------- = = = = = = = = = = */
/

/*
g_eval_sel.c
Function: evaluates the value of the read mask returned from the

select call in set_sel.
If the signal comes in on the listening socket, the
client is requesting to be accepted for connection by
the GRIM server.
If the signal comes on a socket that has already been
established (accepted), the header is read by cl_rdmsg
and appropriate action is taken.

Variables: sockets - array containing socket info
read_mask - indicates which sockets have info on them

Coded by: Michele Grieshaber
Date: 06/10/91
•/

Appendix C 231

www.manaraa.com

-*/
#define_BSD
#define TRUE 1
#dcfine FALSE 0
#include <sidio.h>
#include <sys/lypes.h>
#include <sys/socket.h>
#include <neiinet/in.h>
înclude <netdb.h>

^include <sys/ioctl.h>
#include <fcntl.h>
#include <sys/file.h>
#include <signal.h>
#include <sys/selecLh>
#include <ermo.h>
#include “../mysock2.h"

I* — supporting routines — */
void g_rd_msgO;
void g_ask_idO;
f* — end supporting routines — */

extern int sockets[2];
extern int num_socks;

g_eval_sel(fd set read mask)
{
int new_sock; /* new socket accepted by the server */
int i; /* just your ordinary everyday integer */
struct sockaddrjn sin; /* structure containing client ip stuff */
int length = sizeof(sin); /* lenght of above structure */

/*— check to see if the readjnask matches any of the available sockets —*/
if(FD_ISSET(sockets[0], &read_mask»
{

/* — accept the new connection — */
if((sockets[num_socks] = accept(sockets[0],&sin,&length)) < 0)
(

perror("Serveraccept”);
exit(-3);

}
I* — send a message to the newly connected client to get his name */
g_ask_id(sockets[num_socks]);
num_socks += 1;

) else {
/* — check the other connected sockets one at a time for info — */
for(i = 1; i < num_socks; i++)
{
if (FD_ISSET(sockets[i], &read_mask))
{

Appendix C 232

www.manaraa.com

/* — read message on socket— */
g_rd_msg(sockets[i]);
)/* — end if— */

}/* — end for — */
}/*— end if— •/

return;
} /* — end g_cval_sel.c — */

NAME: g_ask_id;5

TITLE: GRIM g_ask_id

PARAMETERS:
LOCALS:
BODY:
p --------------------------------
Source Code Filename: g_ask_id.c
Special Considerations: NONE
Purpose:
To inquire the name of the client application
who owns the GRIM widget
Belongs to GRIM

— ----■==msgi== = ga„ i===!========= *i
#define_BSD
#define TRUE 1
#define FALSE 0
^include <stdio.h>
#include <sysAypes.h>
^ in c lu d e < sy s /so c k e L h >
Ainclude <sys/socketvar.h>
Ainclude <sys/iiio.h>
include <ermo.h>
Ainclude “..Anyscck2.h"

void write_header 0;

void g_ask_id(int sock)
(
HEADER header;

f* — send msg to client asking for an identifying siring — */
header.size_in_bytes = 0;
header.maj_opcode = 0;
header.m in_opcode & 0;
write_header(sock, header);

Appendix C 233

www.manaraa.com

return;
} /* — end g_askJd — */

NAME: g_rd_msg;5

TITLE: GRIM g_id_msg

PARAMETERS:
LOCALS:
BODY:
/»--------------
Source Code Filename: g_rd_msg.c
Special Considerations: NONE
Purpose:
To read the header off of the socket to send
to be evaluated.
Belongs to GRIM
— — UU— ■!------- *1
/
* —= ====== = = = = = = = ———= = ———=====*/
/*
g_rd_msg.c
Function: reads the header from the information coming in on a socket.

Header info then sent to a routine which does a switch
on the major and minor opcodes contained in the header.

Variables: readjsock - socket on which info is waiting
sock_struc - structure containing socket info

Coded by: Michele Grieshaber
Date: 06/10/91
changed for the grim interface by mmg on 8/27/91
V
i
♦ = _JTr==5
#defme_BSD
#define TRUE 1
#define FALSE 0
^include <stdio.h>
include <sys/types.h>
#include <sys/sockeLh>
include <sys/socketvar.h>
#include <sys/uio.h>
^include <ermo.h>
#include “.7mysock2.h”

/* — supporting routines — */
void g_sw_opQ;

Appendix C 234

www.manaraa.com

void g_close_sock();
I* — end supporting routines — */

g_rd_msg(int read_sock)
(
int nval; /* return code from read +/
HEADER header; /* header read from the socket. Contains info*/

f* such as size of info on socket, major opcode */
f* and minor opcode------------------------------------*/

f* — read the header from the information sitting on the socket — */
nval «* read(tead_sock, &headcr, sizeof(HEADER));
if(nval == -1)
{

perror(“rd_msg: read”);
exit(l);

} else if(nval == 0) {
I* — go to routine to close connection and take socket out of list - */
g_close_sock(read_sock);

) else {
/* — send to sw-op to determine action associated with opcode — */
g_sw_op(header, read_sock);

)/* — end if— •/

return;
) /* — end g_rd_msg.c — *t

NAME: g_close_sock;6

TITLE: GRIM g_close_sock

PARAMETERS:
LOCALS:
BODY:
I* ------ » - --------- --------------------------- -
Source Code Filename: g_close_sock.c
Special Considerations: NONE
Purpose:
To close a socket which is no longer active
Belongs to GRIM
-- v

/* g_close_sock.c
Function: deletes a socket from the socket list when a client is
closed.
Arguments: int dead.sock— socket that has been closed
SOCKJNFO *sock_struc — structure containing number of

Appendix C 235

www.manaraa.com

sockets and the socket list
Coded by: Michele Grieshaber
Date: 06/05/91
changed for grim interface by mmg on 8/27/91
*/
/*= * /
#include <stdio.h>
^include <sys/un.h>
#include “.7mysock2.h"
#define pathname “../execs/s.grimsock”

extern int sockets[2];
extern int num_socks;

g_close_sock(int dead_sock)
{
intij;
static int size_of_name = SO;

/* — loop thru socket list to find entry which matches dead socket — */
for (i = 0 ; i < num socks; i++)
(

if(sockets[i] = dead sock)
{

f* — if the socket is dead, close the widget — */
unlink(pathname); /* gets rid of socket file used for communication */
exit(0);

) /* — end if dead.sock— */
}/* — end fori — */

return;
) /*— end g_close_sock.c — */

NAME: g_sw_op;5

TITLE: GRIM g_sw_op

PARAMETERS:
LOCALS:
BODY:
r 5==========a===g===gg
Source Code Filename: g_sw_op.c
Special Considerations: NONE
Purpose:
To determine the module which will handle
the message which has just come in on the socket.
Belongs to GRIM

Appendix C 236

www.manaraa.com

g_sw_op.c
Function: based on the major and minor opcodes contained in the

header structure passed in from the rd_msg routine,
this routine (using switch statements) will determine
the appropriate action to take

Variables: header - contains size and maj and minor opcodes
sock_struc - structure containing socket info
readjsock - socket on which information resides

Coded by: Michele Grieshaber
Date: 06/10/91
changed for grim interface by mmg on 8/27/91
V
t» » j
#define_BSD
Adefine TRUE 1
#define FALSE 0
Adefine size_of_name SO
#include <stdio.h>
Ainclude <sysAypes.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
Ainclude <sys/uio.h>
Ainclude <ermo.h>
Ainclude “.7mysock2.h"
Adefine ADD 1
Adefine DELETE 0

/* — supporting routines — */
void g get new listO:
void g_add_nameO:
void g_add_to_listO;
void g_make_attrib_listO;
/* — end supporting routines — */

g_sw_op(HEADER header, int read_sock)
{
inti,j; I* an i for an i */

f* — begin major opcode switch----------------------
switch(header.maj_opcode)
{

caseO:
f* — begin minor opcode switch for major case 0
switch(header.min_opcode)
{

caseO:

 */

*/

Appendix C 237

www.manaraa.com

g_add_name(read_sock, header.size_in_bytes);
break;

case 1:
break;

case 2:
g_add_to_list(read_sock, header);

break;

case 3:
break;

default:
printf(“g_sw_op: not a valid minor opcodeNn”);

break;
) I* — end switch(min_opcode) — */
I* — end minor opcode switch for major case 0 ---------------------- */

break;

case 1:
break;

case 2:
switch(header.min_opcode)
{

caseO:
J* — get updated list info which originated from server — */
/* — note that header.size_in_bytes is actual an

action code for the widget to add or delete list —*/
g get new listfread sock, header.size in bytes):

break;

case 3:
I* — get and display attribute list— */
gjnake„attribJist(read_sock, header);

break;

default:
printf(“not a valid minor opcode for major opcode = 2ta”);

break;
} /*— end switch minor opcode for major opcode - 2 — */

break;

default:
printf(“g_sw_op: not a valid major opcode \nH);

break;
}/*— end switch(maj_opcode)— */
I* — end major opcode switch--
return;
} /* — end g_sw_op.c — */

Appendix C

www.manaraa.com

NAME: g_add_name;7

TITLE: GRIM g_add_name

PARAMETERS:
LOCALS:
BODY:
/» = = = = = = = ==== = = = = = = = === = = = =
Source Code Filename: g_add_name.c
Special Considerations: NONE
Purpose:
To receive the owning client applicationqs
name and to place that in the widget for identification
purposes.
Belongs to GRIM

#include <stdio.h>
#include <string.h>
include <Xm/Xm.h>
^include <X11/Intrinsic.h>
#include <X1 l/StringDefs.h>
#include <Xm/SelectioB.h>

extern char *my_client;
extern Widget selection_box;
char *read_nameO;

void g_add_name(int read sock, int name_size)
{
XmString client_name, new_string;
XmString charset = (XmStringCharSet) XmSTRENG_DEFAULT_CHARSET;
intn;
Argargs[10];
char *name;

if(name size >50)
{

return;
}

f* read name to add to list off of socket */
name = iead_name(read_sock, name, name.size);
my.client = (char *)malloc(name_size);
my_client = strcpy(my_client, name);

/* create a Motif string out of the name— */
client_name = XmStringCreateLtoR (my_client, charset);
new_string = XmStringCreateLtoR(“Exchange Selections for charset);
new_string = XmStringConcat(new_string, client_name);

Appendix C 239

www.manaraa.com

/* — set the arguments for the selection box to include new name — */
n = 0;
XtSetArg <args[n], XmNlisiLabelString, new_string); n++;
XtSetValues (selection_box, args, n);
free(name);
XmStringFrce(client_name);
XmStringFree(new_string);

return;
} f* — end g_add_name — */

NAME: g_add_to_list;7

TITLE: GRIM g_add_to_list

PARAMETERS:
LOCALS:
BODY:
/* — — —
Source Code Filename: g_add_to_listx
Special Considerations: NONE
Purpose:
To receive a list of clients to put in the
exchange selections list of the widget
Belongs to GRIM
== = = ====: ^ s= = a= = = = = = = = = = */
#define_BSD
#definc size_of_name 50
#deflne ADD 1
#define DELETE 0
^include <stdio.h>
^include <sysAypes.h>
#include <sys/socketvar.h>
Sinclude <sys/socket.h>
#include <sys/uio.h>
#include <netinet/in.h>
^include <netdb.h>
^include <sys/un.h>
#include “.7mysock2.h”

f* — declaration of external functions — */
void g put in listQ:
char *read_nameO;

void g_add to_list(int read_sock, HEADER header)
{
inti;

Appendix C 2 4 0

www.manaraa.com

char ‘ name;

/* — get the incoming info from client on xchg list — */
for (i = 0; i < header.size_in_bytes; i++)
{

name = read_name(read_sock, name, size_of_name);
if (header.size_in_bytes — ADD)
{

g put in list/namet:
}

) /* — end for header.size_in_by tes (number in list) — */

faee(name);
return;
} /* — end g_add_to_list.c — */

NAME: g get new lisLfi

TITLE: GRIM g_get_new__list

PARAMETERS:
LOCALS:
BODY:
/ * -----------
Source Code Filename: g get newlistc
Special Considerations: NONE
Purpose;
To add or delete a client name from the
exchange selections list.
Belongs to GRIM
= = = = = =-— ..
#define_BSD
Adeline size_of_name SO
Adefine ADD 1
#define DELETE 0
include <stdio.h>
Ainclude <sys/types.h>
#include <sys/socketvar.h>
Ainclude <sys/socket.h>
#include <sysAiio.h>
#include <netinet/in.h>
Ainclude <netdb.h>
include <sys/un.h>
#include “../mysock2.h”
f* — declaration of external functions — +/
void g put inJistO;

Appendix C 241

www.manaraa.com

void g_deleteJrom JistQ;
char * read_nameO;
f* end declaration of e.funcs */

void p yet new list (int sock, int action)
{
inti;
char *new_item;

/+ — read in the list items and put them in a linked list— */
newjtem = read_name(sock, new_item, size_of_name);

f* — determine if action is add or delete — */
if (action == ADD)
(

g put in listfnew item):
} else [

g_delete from list (newjtem);
)

return;
} /*— end g net new lisle — */

NAME: p put in list:5

TITLE: GRIM p put in list

PARAMETERS:
name: datajn
LOCALS:
BODY:
I*--------------= = = = ====== = = = = = = = =
Source Code Filename: p put in Uslc
Special Considerations: NONE
Purpose:
Places a name in the selection list of
the GRIM widget
Belongs to GRIM
asaa = a sga sa ; = = = = = = = = »/
#include <stdio.h>
#include “.ymysock2.h"
#include <Xm/Xm.h>
#include <X11/Intrinsic.h>
#include <Xm/SelectioB.h>

extern Widget selection_box;
extern intlistnum;

Appendix C 2 4 2

www.manaraa.com

extern XmString list_item[50];

void g put in listfchar *new_item)
(
intn;
XmString charset = (XmStringCharSet) XmSTRING_DEFAULT_CHARSET;
Argargs[10];

I* — go thru linked list and put items in the widget — */
f* — add items to list for each client that is attached — */
listjtem[listnum] = XmStringCreateLtoR(new_item, charset);
listnum += 1;
n = 0;
XtSetArg (args[n], XmNtextString, list_item[0]); n++;
XtSetArg (args[n], XmNlistltems, list.item); n++;
XtSetArg (args[n], XmNlistltemCount, listnum); n++;
XtSetValues (selection.box, args, n);

return;
) /*— end g put in lisle — */

NAME: g_delete_from_list;5

TITLE: GRIM delete_from_Iist

PARAMETERS:
item_name: data_in
LOCALS:
BODY:
/»------------------------------- = = = = = = = = = = =
Source Code Filename: g_delete_from_list
Special Considerations: NONE
Purpose:
To delete the name of a client who has
disconnected from the integrated system. This
client name is in the selection list used to
request data exchanges.
Belongs to GRIM
aaaaB asaaaa, ------------======s======= === ===== = s *i
#defme size_of_name 50
#include <stdio.h>
^include <string.h>
#include u.ymysock2.hH
#include <Xm/Xm.h>
ttinclude <X11/Intrinsic.h>
^include <Xm/SelectioB.h>

Appendix C 243

www.manaraa.com

extern Widget selectionJ x m ;

extern int listnum;
extern XmString listjtem[50];

void g_deleteJrom Jist (char *new_item)
{
inti.j.n;
XmString charset = (XmStringCharSet) XmSTRING_DEFAULT_CHARSET;
Arg args[10];
XmString item;

/* — change the newjtem to an XmString, then compare — */
item = XmStringCreateLt6R(newJtem, charset);

I* — cycle thru the list and determine which one matches — */
for (i = 0; i <= listnum; i++)

{
if(XmStringCompare Gist item[i], item) = 0)
{

/* — delete that item from the list— */
for (j = •; j <= listnum; j-H-)
{

listjtem[j] s XmStringCopy(listJtem|j+l]);
)
listnum -= 1;

)
}

n = 0;
XtSetArg (args[n], XmNtextString, listjtem[0]); n++;
XtSetArg (args[n], XmNlistltems, listjtem); n++;
XtSetArg (aigs[n], XmNIistltemCount, listnum); n-H-;
XtSetValues (selectionjxn, args, n);

return;
) I*— end g_delete_fiomJisLc — •/

Appendix C

www.manaraa.com

NAME: g_make_attribjist;5

TITLE: GRIM g_make_attrib_list

PARAMETERS:
LOCALS:
BODY:
I*---
Source Code Filename: g_make_attrib_list.c
Special Considerations: NONE
Purpose:
To create a list of attributes based on
items sent to the widget from another application
in the integrated system.
Belongs to GRIM
= */
#define_BSD
#deflne size_of_name 50
#include <stdio.h>
^include <sysAypes.h>
#include <sys/socketvar.h>
#include <sys/socketh>
înclude <sys/uio.h>

^include <nednet/in.h>
#include <netdb.h>
#include <sys/un.h>
^include “../mysock2.h”
#inciude <Xm/Listh>
#include <Xm/BulletinB.h>
^include <Xm/PushB.h>
#include <Xll/StringDefs.h>
#include <X1I/Intrinsic.h>
include <Xm/Xm.h>
înclude <X11/Shell.h>

^include <X1 l/MwmUtil.h>

/* — function declarations — */
char "tiead_nameO;
void write_headerO;
static Widget make_bboard_dialogO;
static Widget make_list_widgetO;
static XmString Str2XmString0;
static Widget CreatePushButtonO;
extern Widget row.column;
Widget bu!letin_board; /* — bulletin board widget for attribs — */
int comp.num = 0;/* — component number of item chosen — */
extern int sockets[2]; /* — contains listening and client sock — */
extern int num_socks; /* — number of socks in sockets array — */
char * responder, /* — name of client to whom CAL belongs — */
I* ^ ------------ = */

Appendix C 245

www.manaraa.com

void atlribjist_item_callback(w, client_data, call_dala)
Widget w;
caddr_tclient_data;
caddr_t calljdata;
{
char *string;
XmListCallbackStruct *list_data = (XmLislCallbackStruct *)call_data;
int n;
Arg args[10];

/* — put chosen list item into the client J d — */
XmStringGetLtoR (list_data->item, XmSTRING_DEFAULT_CHARSET, &string);

I* — need to extract the component number from the string — */
sscanf(string, “%d", &comp_num);
return;
}/* =====aa=i^ = = = i= s ;saa8S=====m=tM===== */
/* ok_calIback:
this callback for the ok button will send the list choice to
the client which then transfers it to the server and so on. */
/* — — — -==g==sas88Bas8aa== =gs=5==========sa
void ok_callback(w, client_data,call_data)
Widget w;
caddr_t client_data;
caddrjt calljdata;
{
HEADER header; /* — header for protocol msg to client— */

headers ize_in_bytes = 0,
header.maj_opcode = I;
header.m in_opcode = 4;
write_header(sockets[l]t header);
/* — write the source name to the client— */
f* — source name is the name of the client to whom the client attribute
list belongs--*/
write_name(sockets[l], responder, size_of_name);
printfC‘ok_callback: the source name is %s\nn, responder);

/* — send comp num to client for transmission to server etc — */
if (write(sockets[l], &comp_num, sizeof(int)) < 0)
{

penor(“ok_callback: writing comp num”);
exiKl);

}

/* — close the widget— */
XtUnmanageChild(bulletin_board);
free(responder);
return;
}

Appendix C

www.manaraa.com

p --------- --- — = = = = > = •/
p cancel.callback:
this callback for the cancel button will destroy the client attribute
list without transmitting any information to the client */
!*■
void cancel_callback(w, client_data,call_data)
Widget w;
caddr_t client_data;
caddr„t calLdata;
{
P — kill the client attribute widget — */
XtUnmanageChild(bulletin_board);
return;
)
r — , * nj ------- ----—■■■»/
P »/
void gjnake_attrib_list(int read_sock, HEADER header)
{
inti; P —just an integer— */
char *comp_name; p — name to go in attribute list — */
int size_of_compname = 21; P — size of name to go in attrib list — */
int comp.num; /* — component number — */
Widget list_widgeu /* — list widget identifier — */
XmString motif_string, Str2XmString; /* — strings for motif — */
char text[4]; f* — text buffer to put comp.num in — */
char blankQ = “ f* — need i say more? — */
char *texl2; /* — text string for composite list item */

/* — read the source name of the attribute list — */
responder = read_name(read_sock, responder, size_of_name);

P — create a bulletin board dialog widget — */
bulletin.board = makejbboard_dialog0;

P — create a list widget to go in bulletin board — */
list_widget= make_list_widget(bulletin_board, header.size_in_bytes);

P — read the list off of the socket and put it in a file selec widget */
for (i — 0; i < header.size_in_bytes; i++)
{

P — read component number and component name — */
if(read(read_sock, &comp_num, sizeof(int» < 0)
{

perrorf'make.attjist: reading comp_numH);
exit(l);

}
comp_name = iead_name(read_sock, comp_name, size_of_compname);

p — clear out text— */
bzero((char *)text, sizeof(text));

Appendix C

www.manaraa.com

/* — write comp number into text buffer — */
sprintf(text, “%d”, comp.num);

/* — put text string into text2 string — */
text2 = (char *)malloc(size_of_compname+4+l);
text2 = strcat(text2,text);
I* — add a blank after the comp num in the text string — */
text2 = strcat(text2 , blank);
/* — add the name of the component to the string — */
text2 = 811081(16x12, comp_name);
(*— add the string as an entry in the list— */
AddToListOist_widget, text2, i+1);

I* — clear and free— */
bzero((char *)text2, size_of_compname+4+l);
free(text2);
free(comp_name);

}
XtManageChild(bulletin_board);
return;
) f* — end make attrib list.c — */
/*= = = — = := = = ,= = = = = = = = = = = =
Widget make.bboaid dialogO
{
Widget bulletin;
Widget ok, cancel;
Argargs[10];
intn;
XmString motif_string, Sb2XmStringO;
char textQ = “client attribute list”;
motif_string = Sti2XmString(text);

I* — create a bulletin board dialog, but donqt manage it. A callback
will manage it later-------------- */
n = 0;
XtSetArg(args[n], XmNautoUnmanage, False); n++;
XtSetArg(args[n], XmNnoResize, False); n++;
XtSetArg(args[n], XmNdialogTitle, motif_string); n++;
bulletin - XmCreateBulletinBoardDialog(row column,

“bulletin”,
args,
n);

I* — create push buttons in dialog, the ok is default — */
n = 0;
XtSetArg(args[n], XmNshowAsDefault, 1); n++;
ok = CreatePushButton (bulletin, “OK”, args, n, ok_callback);
n = 0;
XtSetArg(args[n], XmNdefaultButton, ok); n++;
XtSetValues(bulletin, args, n);
n = 0;

Appendix C

www.manaraa.com

XtSelArg(args[n], XmNx, SO); n++;
cancel = CrcatePushButLon(bulletin, “Cancel”, args, n, cancel_callback);
XmStringFree(moCif_string);
retum(bulletin);
) /* — make bboard_dialog.c — *f
/* “ = =
Widget make_list_widget(W idget parent, int list_size)
(
Widget list;
Argargs[10];
int n;

/* — set up empty list — */
n = 0;
XtSetArg(args[n], XmNitemCount, 0); n++;
XtSetArg(args[n], XmNselectionPolicy, XmSINGLE_SELHCT); n++;
XtSelArg(args[n], XmNvisibleltemCount, list_size); n++;
XtSetArg(args[n], XmNy,50); n++;
list = XmCreateScroIledListCparent,

“list",
args,
n);

XtManageChild(list);
XtAddCaUbackdist,

XmNsingleSelectionCaJlback,
attrib_list_item_callback,
NULL);

retum(list);
) /* — make_list_widget.c — */
f* =— — -------------- ^===== = = = = =====: ^ - - = = = =
AddToList(Widget widget, char stringQ, int position)
{
XmString motif_string, Str2XmStringO;
motif.string = Str2XmString(string);

XmLislAddltemUnselected (widget,
motif_string,
position);

XmStringFree(motif_string);
} /* — AddToList — */
/» = = = = = = = = = g8« a= = = « = = = = = =r = = = =
XmString Str2XmString (string)
char *string;
{
XmString motifjstring;

motif_string = XmStringCreateLtoR(string,
XmSTRING_DEFAULT_CHARSET);

retum(motif_string);
)

Appendix C

www.manaraa.com

Widget CreatePushButton(parent, name, args, n, cal!back_func)
Widget parent:
charnatneQ;
Arg *args;
intn;
void (*callback_func)0;
(
Widget push_widget;

push_widget = XtCreateManagedWidget(name,
xmPushButtonWidgetCiass,
parent,
args,
n);

XtAddCallback(push_widget,
XmNactivateCallback,
callbackjunc,
NULL);

return(push_widget);
) f* — createpushbutton— */

Appendix C

www.manaraa.com

APPENDIX P; CLIENT APPLICATION STRUCTURE CHARTS / M-SPECS

Appendix D 251

www.manaraa.com

lntegratk>n_Client;4

Sock
Soek2 Sock

Sock

header

ap_aock

header

malnap

handlerl

Sock

read sock

www.manaraa.com

cl_rdmsg;1
No title

read aock

raad aock

nval
header

ct_awop

d_rdmag

Appendix D 253

www.manaraa.com

Appendix D 254

www.manaraa.com

send_name;l
No title

send nam

read sock

header

appIlcation_name

name_size

^ 9 * read sock
header header^

read socko

send name

Build Header write header write name

Appendix D 255

www.manaraa.com

got_clJist;1
No title

g « t_ c l_
lis t

r e a d _ e o e k (A

n i m a n

s iz e o f n a m e

h e a d e r (f
w r i te s o c k

w r i te h e a d e r wrlte_namer e a d _ n a m e

Appendix D
256

www.manaraa.com

relay_data_request;2
No title

read aoek

writo_aock
s?* alze of name

/ writ* _
/ aock" ?
chosen naman

chosen name

write nameread name Build Header

Appendix D 257

www.manaraa.com

req_attrib_list;1
No title

lead aock

req_attrlbjiet

' /wr||B
/ / a o c k " ?

>raad_aockp /
/ / header̂
reaponderf? /

header

Build Header write header write nBmewrite name

Appendix D 258

www.manaraa.com

Appendix
D

req_from_a«ribJist;1
No title

raad_sock

write
sock/ /write

"*• J ^^ _<ock J/
stanof 7 _name V

/ _name P/
responder responder O

header size_of
name listnumheader

s o c k l i s t n u m

Build Header write_header teadjiame write name write name writejlst num

www.manaraa.com

update_w idget;1
N o tide

Idget

w rite s o c k

size of nameread sock
size of name name

write name

updatejwldget

read name

Appendix D 260

www.manaraa.com

receive_buffer;1
No title

receive
buffer

read sock

y header

receive
buffer '

Appendix D 261

www.manaraa.com

relay_attrib_list;1
No title

retay_
attrib

list

read sock

header

relay_attrlb
list

Appendix D 262

www.manaraa.com

respondjo_buffer_request;1
No title

respond
to
buffer

|̂ > read_sock

y header

respond_to
buffer

Appendix D 263

www.manaraa.com

give_attrib_list;1
No title

glve
attib_
list

header

^ readjsock

give attrib

Appendix D 264

www.manaraa.com

respond_attribJtem ; 1
No title

respond
_attrlb

item

read sock

header

respond ,
attrlb item

Appendix D 265

www.manaraa.com

NAME: ap_sock;6

TITLE: Integration client main module

PARAMETERS:
ACTIVE_SERVER: data_out
ACTIVE_WIDGET: data_out
LOCALS: server
gethostbyname
Host
Pid
c
len
i
one
ermo
handle.me
endjiandle
grimmy
grim Jen

BODY:
I*------------------------------------ — ----- = ====
Source Code Filename: ap_sock.c
Special Considerations:
Sets up global definitions
for data which the client interface and the application
will have in common.
Purpose:
To open asynchronous sockets with the server and the
GRIM widget and set up an event handler which will
act when a signal comes in on one of those sockets.
Belongs to client application
= = = = = = = = - r-V
/

* = = = = = — = = = = = = = ^ ^ - = = = ^ ----------- = = = = = —
/*
ap_sock.c
Function: to act as the AP/SOCK interface between the B-Spline
Toolkit and the integration server located on Port 2000
Variables: none at the moment
Coded by: Michele Grieshaber
Date: 06/10/91
edited the 25th of August for use with client-based GRIM
*/
i
* -— = = = « = = = = = ====== = = = = « = = — = = = = = = = * /
#define_BSD
^define TRUE 1
#define FALSE 0
#include <stdio.h>

Appendix D 266

www.manaraa.com

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <nctinc(/in.h>
^include <neidb.h>
^include <sys/ioctl.h>
#include <sys/select.h>
#include <fcntl.h>
^include <sys/file.h>
#include <sys/un.h>
#include <signal.h>
^include <ermo.h>
//include '‘../mysock2.h”
#include 7u/knight/show/cxecs/showtime.h’’
//define HosiName “cadrt9”
#define Port 2000
#dcfine Port2 2002
#define HostName2 "cadrt9”

void main.apO;
void cl_rdmsg0;
void ask_for_widget0;

t* — global declarations so the handler can understand variables used — *1
int Sock;
int Sock2;
MODEL *Model = (MODEL *)NULL;
char palhname[] = “../execs/s.grimsock”;
int ACTIVE_WIDGET = TRUE;
int ACTIVE.SERVER = TRUE;
/* --- end global decs----------------------------------*/

handler l.c
Function: to handle events that come across on the asynchronous
socket which communicates with the server
Variables: none can be passed in but it needs to know the socket
descriptor for communication with the server and the
location of the Model data structure so that information
contained therein can be used by the b-spline toolkit.
Coded by: Michele Grieshaber
Date: 06/10/91

/*'
/*

7

*//***************************
void handlerl (Signal, Code, SCP)
int Signal, Code;
struct sigcontext *SCP;

7

fd_set read_mask;
struct timeval to;
intrc;

/* mask which tells select what to look for */
f* time value structure for the select call *!
f* return code */

Appendix D

www.manaraa.com

ini nsock;

I* do a select 10 see if there is indeed information on the socket to read1"/
FD_ZERO(&read_mask);

f* set mask to include socket to server and to the GRIM */
FD_SET(Sock ,&read_mask);
FD_SET(Sock2, &read_mask);

!* — clear out the timeval structure — */
bzero((char *)&to, sizeof(to));
to.tv_sec = 0;

/* determine if sock or sock2 greater */
if (Sock > Sock2)
{

nsock = Sock;
] else (

nsock = Sock2;
J

/* use select to check for socket activity */
rc s selecl(nsock+l, &read_mask, (fd_set *)0, (fd_set *)0, &to);
if(rc<0)
{

penrorC'selecu”);
} else if(rc > 0) {

if(FD_ISSET(Sock, &read_mask))
(

cl_rdmsg(Sock);
} else (

cLrdmsg(Sock2);
}

}
return;
} /* — end handlerl — */

mainO

struct sockaddr_in server,
struct hostent “Host, *gethostbynameO;
intPid;
intc, len.i ,one=l;
extern int ermo;
struct sigacdon handle_me, end_handle;
struct sockaddr_un grimmy;
int grim_len;

I* server internet info */
f* host information */
I* process ident */

/* error number*/
/* signal structures */

do

Appendix D

www.manaraa.com

/* — create a socket for the client — */
Sock = socket(AF_INET,SOCK_STREAM,0);

if (Sock = -1)
(

perror(“Inet_Client: socket");
exit(-3);

]
Sock2 = socket(AF_UNIX,SOCK_STREAM,0);
if(Sock2 = -l)
(

perror(“Inet_Client: socket”);
exit(-3);

}

f* — clear out the handle_me structure — */
bzero((char *)&handle_me, sizeof(hand!e_me));
handle_m e. sa_handler =handlerl;
sigaction(SIGIO, &handle_me, &end_handle);

!* — set up the socket to be nonblocking???????? — */
I* — set up the async event handler---------------------- */
/* — set the process receiving SIGIO signal to us — */
Pid = getpidO;
if (iocd(Sock,SIOCSPGRP>&Pid) = -1)
{

perror(“ioctI HOSETOWN”);
exit(l);

}

/* — allow receipt of async i/o signals — */
if (ioctI(Sock, HOASYNC, &one) < 0)
{

perrorCioctl FIOASYNC:”);
exit(l);

}
if (iocU(Sock2,SIOCSPGRP,&Pid) = -1)
{

perrorfioctl HOSETOWN”);
exit(l);

)

/*— allow receipt of async i/o signals — */
if (ioctl(Sock2, FIOASYNC, &one) < 0)

(
perror(“ioctI HOASYNC:”);
exit(l);

)
Host= gethostbyname(HostName); /* resolves strg to internet address*/
if (Host = NULL)
(

Appendix D

www.manaraa.com

perror(“Inet_Client;host”);
exit(-l);

}

bzero{(char *)&server,sizeof(server)); /*binds socket to port 0 */
server.sin_family = AF_INET; /* set domain */
server.sin_port = Port; I* set port to connect */
bcopy(Host->h_addr, (char *)&server.sin_addr.s_addr,Host->h_length);

/* — copies the address of what he wants
to connect to into sin structure — */
bzero((char *)&grimmy, sizeof(grimmy));
grimmy.sun_family = AF_UNIX;
strcpy(grimmy.sun_path, pathname);
grimjen = strlen(grimmy.sun_path) + sizeof(grimmy.sun_family);

I* — try to connect to the server — */
c = connect(Sock, (char *)&server, sizeof(server));
if (c < 0)
t

perrorfconnecting stream socket “);
} else (

printf(“ap sock: connected to serveAn’’);
}

/* connect the socket to the GRIM */
c = connect(Sock2,(struct sockaddr *)&grim my ,s izeo f(struc t sockaddr_un));
if (c < 0)
{

perror(“connecting stream socket 2”);
exit(I);

) else (
printf(“ap_sock: connected to grimmyNn");

}

) while (c < 0 && errno — ECONNREFUSED);

f* now that the connection has been established, must proceed to the
main portion of the application */
I* main_ap will call the main program of B-Spline Toolkit and start exec */
ask_for_widget(Sock);
main_apO:

}/*— end ap_sock.c — */

Appendix D

www.manaraa.com

NAME: ask_for_widget;4

TITLE: IC ask_for_widget

PARAMETERS:
Sock: daiajn
ACTIVE_SERVER: datajn
LOCALS: header
BODY:
/* sa8a8=saBa88aaaa= = ==a=== = = =g==g==g==g=gag=
Source Code Filename: ask_for_widget.c
Special Considerations: NONE
Purpose:
Sends a request to the server for a
list of clients connected to the integrated
system from whom it can request data. This
information when received will be relayed
to the GRIM widget for display.
Belongs to client application
 — — */
#define_BSD
^include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
înclude <sys/uio.h>

#include <netinet/in.h>
#include “/u/michele/sock/mysock.h”

extern int ACTIVE_SERVER; /* used to make sure server active */
void write_headerO;

void ask for_widget(int sock)
(
HEADER header,

f* — ask the server to send info to client to pass to widget — */
header.size_in_bytes = 0;
header.maj_opcode = 0;
header.min_opcode = 1;
if (ACTIVE SERVER)
{

write_header(sock, header);
} f* — end if active server— */
return;
) I*— end ask_for_widget.c — */

Appendix D 271

www.manaraa.com

NAME: main_ap;3

TITLE: IC main.ap

PARAMETERS:
LOCALS:
BODY:
r =
Source Code Filename:
Special Considerations: NONE
Purpose:
================= =ggaaaBgsg=SBaB8aaB=====i===agaB v

Name: main_ap.c
Author Michele Grieshaber

Date: 06/10/91
Description: this subroutine is called by the AP/SOCK Interface

to start the main routine of the B-Spline Toolkit.
The data structure Model is initialized here and
contains data pertinent to the geometry used in the
Toolkit.

* /
/» .aaBS=aasagsas» s„ am B = =s=SSSBSSSSaBas======*/
#include <stdio.h>
^include “/u/knight/show/execs/showtime.h"

I* — supporting routines — */
void showtimeO;
/* — end supporting routines — */

void main.apO
{
I* — start the b-spline toolkit — *1
showtimeO;

return;
} I* — end main_ap.c — */

Appendix D 272

www.manaraa.com

NAME: handler 1;2

TITLE: IC event handler

PARAMETERS:
LOCALS:
BODY:

. ====. = = = = = = = ^ = = ^ = = = = = = = =
Source Code Filename: pan of ap_sock.c
Special Considerations: NONE
Purpose:
The handler allows the reception of asynchronous
signals. It determines upon which socket the
signal occurred using a read_mask. When a signal
occurs, the main application is suspended, the handler
is enabled, the signal is read and its message
evaluated for handling. When the event has been
properly handled, control is restored to the
main application.
-----------------------------, ---------------- -------- -- = g a = s = = = = = ^ = = V

NAME: cl_rdmsg;4

TITLE: IC cl_rdmsg

PARAMETERS:
read_sock: dataJn
LOCALS: header
nval
BODY:

. ■ := = = = = ^ = = = M = s = = = = = ^ J=== = = ^ = = = = = = g = M M

Source Code Filename: cl_rdmsg.c
Special Considerations: NONE
Purpose:
First read performed on a signal. Tries
to read a “headers" worth of data from the socket.
If there is no data on the socket, then it is
perceived as a disconnection signal. When there
is data, the header is read and sent for evaluation
to a module which performs select_ops based on
the header.maj_opcode and header,min_opcode portions
of the header.
Belongs to client application
 «/
/

 — ' - — *■■■— »/

Appendix D 273

www.manaraa.com

cl_rdmsg.c
Function: reads the incoming header of the socket connected to

the server and sends it to cl.swop for resolution
Variables: read_sock - socket on which information is waitin
Coded by: Michele Grieshaber
Date: 06/10/91
*/
/

- ■ — — * /

#defme _BSD
^include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/uio.h>
#include <netinet/in.h>
înclude “/u/michele/sock/mysock.h”

#include“/u/knight/show/execs/showtime,h"

/* — function declarations — */
void cl_swop0;
void sock.closeO;
/* — end function declarations — */

cl_rdmsg(intread sock)
(
HEADER header; f* header containing info size and maj/min opcodes */
int nval; I* return code */

/* — read the header from the information sitting on the socket — */
nval = read(read_sock, &header, sizeof(HEADER));
if(nval = -1)
{

penor(“cI_rdmsg: read”);
exit(l);

) else if(nval — 0) {
I*— go to routine to close connection and take socket out of list - */
sock_cIose(read_sock);

} else {
/* — send the header to a routine which will switch based on opcodes — */
cl_swop(read_sock, header);

}
return;
} f*— end cl_rdmsg.c — */

Appendix D 274

www.manaraa.com

NAME: sock_close;5

TITLE: IC sock_close

PARAMETERS:
LOCALS:
BODY:
r = = = ======= = = = = = = = « = = = = = = = « =
Source Code Filename: sock_close.c
Special Considerations: NONE
Purpose:
To close socket which is no longer active.
Belongs to client application

« = = = = = = « */
#include <stdio.h>
#define FALSE 0
#define TRUE 1

extern int ACTIVE_WIDGET;
extern int ACTIVE_SERVER;
extern int Sock2;

void sock close(intdead sock)
{
inti;

/* — determine if the closed socket was to the server or widget — *1
if(dcad_sock = Sock2) /* — widget is the dead socket — */
{

ACTTVE_WIDGET = FALSE;
} else {/* — server is the dead socket— */

ACTIVE SERVER = FALSE;
}
return;
) /*— end sock_closc.c — */

Appendix D 275

www.manaraa.com

NAME: cl_swop;5

TITLE: IC specific cl_swop

PARAMETERS:
iead_sock: data_in
header: data .in
ACTIVEJSERVER: datajn
Sock: data_in
LOCALS:
BODY:
/* = = = = = ^ = ====== ^= = = = = = = = = = = =
Source Code Filename: cI_swop.c
Special Considerations: NONE
Purpose:
To determine which module should handle
the data incoming on the socket. This determination
is based on a select_op (switches) performed on
the header. maj_opcode and header.min_opcode
portions of the header.
Belongs to client application
= = = = = = = = = = = -- « -------- VMmmm M m * /

/★ ...M , » j
I*
cI_swop.c
Function: resolves the messages passed in from the server by using

opcodes to determine the required response
Variables: read_sock - socket on which to read and write

header - struc containing opcodes
Coded by: Michele Grieshaber
Date: 06/10/91
V
/
»________________________ ._.♦ j
#define _BSD
#define my_name “B-SPLINE TOOLKIT"
#define size_of_name SO
#include <stdio.h>
#include <sys/types.h>
#include <sys/socketvar.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <netinet/in.h>
#include <netdb.h>
#include ".ymysock2.hn
#include '7u/knight/show/execs/showtime.hH

f* — function declarations — */
void get_cljist0;

Appendix D 276

www.manaraa.com

void send_nameO;
void relay_data_requeslO;
void icvjacsyntO;
void req„attribjisi0;
void relay_aUrib_listO;
void rcq_firom_atlrib_lislO;
void messageO; f* message routine belonging to B-Spline toolkit */
/* — end function declarations — */

extern int Sock;
extern int ACTIVE_SERVER;

void cl swop(intread sock, HEADER header)
{
/* char my_nameQ = “B-SPLINE TOOLKIT";*/ /* name of the client */
int nval; /* return code */
int nu = 3, nw = 3; /* parametric u and w values */

/* — starting switch on major opcode---*/
switch(header.maj_opcode)
{

caseO:
switch(header.min_opcode)
{

caseO:
/* the server is asking for information on the client to put— */
/* in a clientjnformation structure------------------------------------*/
send_name(read_sock> header);

break;/* — break min case 0 — */

case 1:
break; /* — break for case 1 — */

case 2:
/* — get info from server and send to widget— */
gel_d_list(read_sock, header.size_in_bytes);

break;/*— break for case 2 — */

) /* — end switch — */
break;/* — end major caseO— */

case 1:
/* — starting switch on minor opcode for major case 1----------- */
switch(header.min_opcode)
[

caseO:
break;

easel: /* case 1 under minor opcode is for the sender*/
relay_data_request(read_sock);

break;

Appendix D

www.manaraa.com

case 2: /* case 2 under minor opcode is for die receiver */
break;/* — end maj case 1 minor case 2 — */

case 3:
/* — request cUenl_altribute listing from server — */
req_attrib_list(read_sock);

break;

case 4:
req_from_attribJist(read_sock);

break;
default:

message(“BAD INFORMATION FROM THE SERVER...", 1);
break; /* — end maj case 1 minor default — */

J /* end switch(min_opcode) */
/* — end minor opcode switch for major case 1------------------------- */

break;/* — end major case 1 — */

case 2:
switch(header.min_opcode)
{

caseO:
/* — update the widget with current info from server — */
update_widget(read_sock, header.size_in_bytes);

break;

case 1: /* case 2 under minor opcode is for the receiver */
rcv_acsynt(read_sock, header);

break;/*— end maj easel minor case2 — */

case 3:
relay_attrib_list(read_sock, header);

break;

) /* — end switch minor for major - 2 — */
break;
default:

message(“BAD INFORMATION FROM THE SERVER.. ”, 1);
break; /* end default for major opcode — */

}/* end switch(mqj_opcode) */
/*— end major opcode switch---
return;
) /*— end cl_swop.c — */

Appendix D

www.manaraa.com

NAME: send_name;4

TITLE: IC send_name

PARAMETERS:
rcad_sock: dataJn
header: dataJn
LOCALS:
BODY:
I*
Source Code Filename: send_name.c
Special Considerations: Need to define client name
at the top of this program.
Separate modules of this
program are necessary for
each client for this reason.
Purpose:
To send the client application name to
the requesting socket (the server or the
GRIM widget)
Belongs to client application
== */
#deftne_BSD
#define my_name “B-SPLINE TOOLKIT"
#deflne size_of_name 50
include <stdio.h>
^include <sys/types.h>
^include <sys/socketvar.h>
#include <sys/socket.h>
#include <sys/uio.h>
^include <netinet/in.h>
^include <netdb.h>
#include “.7mysock2.h”

f* — function declarations — */
void writeJieaderO;
void write_nameO;
extern int ACTIVE.SERVER;

void send namc(int read sock, HEADER header)
{
header.size_in_bytes = sizeof(my_name);

header.maj_opcode = 0,
header.min_opcode = 0;
if(ACTIVE SERVER)
{

write_header(read_sock, header);
write_name(read_sock, my_name, sizeof(my_name));

) /• — end ACTIVE_SER VER — */

Appendix D 279

www.manaraa.com

return;
} /* — end send_name.c — */

NAME: get_cl_list;4

TITLE: IS get_clJist

PARAMETERS:
read_sock: data_in
header.size_in_bytes: datajn
ACTIVE_WIDGET: data_in
Sock2: data_in
LOCALS: name
i
header
BODY:
/* = = = = == _ _ = = = = =

Source Code Filename: get_cl_listc
Special Considerations: NONE
Purpose:
To receive the members of a list containing
application names from the server, and to send the
list members on to the GRIM widget which belongs
to the client who has just received the information.
In the get_cl_list structure chart, write_sock
represents the GRIM widgetqs socket, which is
called Sock2 in the source code.
Belongs to GRIM

#define_BSD
#include <stdio.h>
înclude <sys/types.h>
înclude <sys/socketvar.h>
înclude <sys/socket.h>

#include <sys/uio.h>
#include <nednet/in.h>
#include <netdb.h>
#include <sys/un.h>
#include “.7mysock2.h”
#include “/u/knight/show/execs/showtime.h"
#define size_of_name 50

extern int ACTIVE_WIDGET;
extern int Sock2;
void write_headerO;
void write_nameO;
char *read_nameO;

Appendix D 280

www.manaraa.com

void get_cl_lisl(int read sock, int size)
{
char "name;
inti;
HEADER header;

f* — only if the widget is active will this be performed — */
if (ACTIVE_WIDGET)
{

f* — send msg to widget telling it of incoming clientjist — */
header.sizeJnJ>y tes = size;
header.maj_opcode = 0;
header.min_opcode = 2;
write_header(Sock2, header);
for (i s 0; i < size; i++)
{

/"name *> (char *)maHoc(size_of_name);*/
I* — read off info from the server — */
name = read_name(read_sock, name, size_of_name);
write_name = (Sock2, name, size_of_name);

) /* — end for size — */
} /* — end if ACTIVE_WIDGET — */

return;
) /* — end get_cl_list.c — */

NAME; relay_data_request;5

TITLE: IC relay_data_request

PARAMETERS:
read_sock: datajn
ACTIVE_SERVER: datajn
Sock: datajn
LOCALS: header
responder
requester
BODY:
I* -----------------------------
Source Code Filename: relay_data_requesLc
Special Considerations:
The variable requester must be defined
for every client in the integrated system, therefore, each
client must contain a version of this module with its name
defined (please note that this name must be identical to
the one given in the application exchange relation file.)

Appendix D 281

www.manaraa.com

Purpose:
To notify the application whose name was
chosen to be the supplier of buffer data for the
client of the impending request In other words,
the client sending the request wants to receive
the buffer of the application chosen by the user.
The chosen application is called responder in
this function, since it is he who will respond
to the request by providing the data.
Belongs to client application

ffdeflne _BSD
#define requester "B-SPLINE TOOLKIT"
#define size_of_name SO
#include <stdio.h>
#include <sys/types.h>
include <sys/socketvar.h>
^include <sys/socket.h>
^include <sys/uio.h>
ifinclude <netinet/in.h>
#include <netdb.h>
#include “.7mysock2.h”

f* — function declarations — */
char *read_name();
void write.headerO;
void write_nameO:
extern int ACTFVE_SERVER;
extern int Sock;

void relay_data_request(int read sock)
{
HEADER header;
char * responder;

f* — read the name from the widget to send to server — */
responder = read_name(read_sockl responder, size_of_name);

f* — make sure server is active — */
if (ACTIVE_SERVER)
{

header.size_in_bytes = size_of_name;
header.maj_opcode = 1;
header.min_opcode = 1;
write_header(Sock, header);
write_name(Sock, responder, size_of_name);
write_name(Sock, requester, size_of_name);

) f* — end if ACTIVE SERVER — •/

return;
) /*— end relay_data_request.c — */

Appendix D

www.manaraa.com

NAME: req_attribjist;5

TITLE: IC req_attribjist

PARAMETERS:
read_sock: data_in
ACTIVE_SERVER: datajn
Sock: datajn
LOCALS: header
responder
requester
BODY:
I* s s = ;B s a s s a s 8a=a==8aasas a s a s m m s = m „ a s s a .
Source Code Filename: req_attribjislc
Special Considerations:
Requester must be defined as the
name of the owning application in a define statement at
the top of this module, thus a unique module is needed
per client in the integrated system.
Purpose:
To relay the request registered at the clientqs
widget for the attribute list of the client called
responder. Responder is one of the applications
listed in the widgets exchange selection list.
Belongs to client application

ftdefine JBSD
#define requester “B-SPLINE TOOLKIT”
#define size_of_name SO
#include <stdio.h>
#include <sys/types.h>
#include <sys/socketvar.h>
^include <sys/sockeLh>
^include <sys/uio.h>
include <netinet/in.h>
#include <netdb.h>
#include “„/mysock2.h"

I* — function declarations — *1
void write_header();
void write_nameO;
char *read_nameO;
extern int Sock;
extern int ACTIVE_S ERVER;

void req_attribjist(int read_sock)
f
HEADER header,
char "'responder;

Appendix D 283

www.manaraa.com

/* — send request for attribute list to server — */
header.sizejn_bytes = 0;
header.maj_opcode = 1;
header.m in_opcode a 3;

I* — read name of client from the widget signal — */
responder = read_name<read_sock, responder, size_of_name);

/* — relay this info to the server— */
writeJieader(Sock, header);
write_name(Sock, requester, size_of_name);
write_name(Sock, responder, size_of_name);

return;
} !* — end of req_attrib_iist.c — */

NAME: req_from_attrib_list;4

TITLE: IC req_from_attrib_list

PARAMETERS:
read.sock: data_in
Sock: datajn
LOCALS: responder
requester
list_num
header
BODY:
/* =========a ==========
Source Code Filename: req_from_attribJisLc
Special Considerations:
Requester must be defined as
the name of the owning application, therefore each
client in the integrated system needs to modify
this file to contain his name in requester.
Purpose:
To request data as a function of an item
from the attributes list The attribute list
was supplied in a previous request from a client
in the integrated system, and this request is
directed to that client, known in this function
as responder.
Belongs to client application
= = = ==■■*====== =*==* = = = = = = = = = = = = */
#define_BSD
#define requester “B-SPLINE TOOLKIT”

Appendix D 284

www.manaraa.com

#define size_of_name SO
#include <stdio.h>
^include <sys/types.h>
#include <sys/socketvar.h>
^include <sys/socket.h>
^include <sys/uio.h>
^include <nelinet/in.h>
ttinclude <netdb.h>
#include “.Vmysock2.h”

I* — external functions — */
char *rcad_nameO;
void write_headerO;
void write_nameO;
extern int Sock;

void rcq_from_attrib_Iist(int read_sock)
{
char * res ponder;
int list_num;
HEADER header,

f* — define and write header to server— */
header.size_in_bytes - 0;
header.maj_opcode = 1;
header.m in_opcode = 4;
write_header(Sock, header);

I* — read the source name from widget and send to server — */
responder = read_name(read_sock, responder, size_of_name);
write_name(Sock, responder, size_of_name);

/* — send your name to the server— */
write_name(Sock, requester, size_ofname);

I* — read the component number and send to server — */
if(read(read_sock, &list_num, sizeof(int)) < 0)
{

perror(‘‘rfal: reading component number");
exit(l);

}
if (write(Sockt &list_num, sizeof(int)) < 0)
{

perror(“rfal; write component number”);
exit(l);J

return;
) /*— end reqjromjattribJistc — */

Appendix D

www.manaraa.com

NAME: update_widget;4

TITLE: IC update_widget

PARAMETERS:
header.sizejnj>ytes: datajn
read_sock: datajn
ACI1VE_WIDGET: data_in
Sock2: data_in
LOCALS: i
header
name
BODY:
I*--------------------- ' =
Source Code Filename: update_widgetc
Special Considerations: NONE
Purpose:
To send the name of a client who has
just connected to the servo1, or disconnected, to
the widget The widget updates his selection list
of exchange clients by either adding the name (in
the case of a connect) or deleting it (disconnect).
The name is accompanied by an ADD or DELETE flag.
Belongs to client application
— */
#define _BSD
^include <stdio.h>
^include <sys/types.h>
#include <sys/socketvar.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <netinet/in.h>
#include <netdb.h>
include <sys/un.h>
^include "Jmysock2.h"
#define size_of_name SO

void write_headerO;
void write.nameO;
char *read_nameO;
extern int Sock2;
extern int ACTIVEJWIDGET;

void update_widget(int read sock, int action)
I
inti;
char *name;
HEADER header;

f* — perform only if the widget is active — */

Appendix D 2S6

www.manaraa.com

if (ACTIVE WIDGET)
{

/* — read off the new client list and send to widget — */
name = read_name(read_sock, name, size_of_name);
header.size_in_bytes = action;
header. maj_opcode = 2;
header.min_opcode = 0;
writeJieadcr(Sock2, header);
write_name(Sock2, name);

) I* — end if ACTIVE WIDGET — */

return;
) f* — end update_widgetc — */

NAME; receive_buffer;ll

TITLE; IC specific read_buffer

PARAMETERS:
read_sock: datajn
header: datajn
LOCALS:
BODY:

Source Code Filename: to be determined
Special Considerations: NONE
Purpose:
This module is one which is entirely
client dependent. Each client in the integrated
system must provide a module to receive buffer
data sent by other clients in the system to
the server - where the data is transformed into
the format read into this module by the client
Included in this m-spec is a sample module
called rcv_acsyntc which is used by the
B-Spline Toolkit to receive buffer data
from ACSYNT.
Belongs to client application
— i------------------- = = = = = = = = = = = = = •/
#deflne _BSD
#deflne size_of_name SO
#include <stdio.h>
#include <sys/types.h>
#include <sys/socketvar.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <netinet/in.h>

Appendix D 287

www.manaraa.com

^include <netdb.h>
#include u.ymysock2.hH

/* — function declarations — */
void model_readO;
void aftcr_rcadO;

void rcv_acsynt(int read.sock, HEADER header)
{
int nu - 3, nw = 3; /* parametric u and w values */

I* — the data sent across from the server in this case
is in the form of a linked list of Model data structures.
This portion of the program must clean up an old Model
if it exists, then proceed to place the information on
the socket into the Model linked list which is used to
contain the geometry in the B-Spline Toolkit-------------- */
/* — read the info from the socket — */
model_read(iead_sock,header.size_in_byies);

f* — compute tangents and draw geometry — */
after_read(nu,nw);

return;
} /* — end rcv_acsynt.c — */
/ *__ *j

/*
model_read.c
Function: receives model elements from the server and reads them

into the Model structure for the B-Spline Toolkit.
Variables: read_sock -socket on which to read from server

number_of_models- number of components server sends
Coded by: Michele Grieshaber
Date: 06/10/91
*/
/
 ♦ - — , ■■■■ ♦ /

#dcfmc_BSD
#include <stdio.h>
#include <sys/types.h>
#include <sys/socketvar.h>
#include <sys/socketh>
^include <sys/uio.h>
#include *'.ymysock2.h"
#include “/u/knight/show/execs/showtime.h"
#include *'/u/knight/show/subdivide/imersect.h”

void clean_upO;
extern MODEL * Model;

Appendix D 288

www.manaraa.com

void modeI_read(int read_sock, int number_of_models)
{
int rc; /* return code */
intii.i.j, k;
int nu = 3, nw = 3; f* rendering parameters “/
static int name_size = 21; /* size of component name fields */
comp.data “component, “newcomp; /* ptrs to component structures */
float ptl, pt2, pt3; /* point info from server */

I* — the server will be sending a stream of information containing
a linked list of model structures... the size represents
the number of model structures contained in the list-----------------*/
clean.upO;

/* Initialize Structure IDqs to Zero */
Model->acs_root = -1;
Model->nubs_root = -1;
Model->fillet_root = -1;
Model->int_root = -1;
Model->intlist = (intersection “)NULL;
Model->num_comp = number_of_models;
for(ii = 1; ii <= number of_models; ii++)
t

/*----------- allocate space for new component------------- */
newcomp = (comp.data *)malioc(sizeof(comp_data));
if(ii s=l)
{

Model->comp = newcomp;
} else {

component->next = newcomp;
]
newcomp->existance = 1; /* set existance to yes */
newcomp->nu = nu; /* initialize rendering “/
newcomp->nw = nw;

/* Read in Component Information *1
rc=read(read_sock,newcomp->comp_name, name_size);
if(rc < 0)
{

perror("read_model: read comp name “);
exit(l);

)
rc=read(read_sock1&(newcomp->comp_number),sizeof(int));
if(tc < 0)
{

perror(‘‘read_model: read comp number”);
exit(l);

}
rc=read(read_sock,&(newcomp->color)^izeof(int));
if(rc < 0)
{

Appendix D

www.manaraa.com

peirorf'ieacLmodel: read comp color'*);
exit(l);

)
rc=rcad(rcad_sock,&(newcomp->acs_ncross),sizeof(int));
if(rc < 0)
{

perror(“read_model: read acs_ncross”);
exit(l);

}
rc=read(read_sock,&(newcomp->acs_npts),sizeof(int));
if(rc < 0)
{

perror(“read_model: read acs_npls’’);
exit(l);

]

f* Allocate Array for hermite points--------------*/
newcomp->acs_pts = (float * * *)calloc(newcomp->acs_ncross,
sizeof(float **));
newcomp->acs_utan = (float ***)calloc(newcomp->acs_ncross,
sizeof(float •*));
newcomp->acs_wtan = (float ***)calloc(ncwcomp->acs_ncross,
sizeof(float **));
for (i ■ 0 ; i < newcomp->acs_ncross; i++)
{

newcomp->acs_pts[i] = (float **)calloc(newcomp->acs_npts,
sizeof(float *));
newcomp->acs_utan[i] = (float **)calloc(newcomp->acs_npts,
sizeof(float *));
newcomp»>acs_wtan[i] = (float **)calloc(newcomp->acs_npts,
sizeof(float *));
for (j = 0 ; j < newcomp->acs npts; j++)
{

newcomp->acs_pts[i][j] = (float *)calloc(3,sizeof(flaat));
newcomp->acs_utan[i] [j] = (float *)calloc(3,sizeof(float));
newcomp->acs_wtan[i] (j] = (float *)calloc(3,sizeof(float));

) /* — end for j — */
) /*— end fori — */

/* Read in point data-----------------*/
for (i = 0 ; i < newcomp->acs_ncross; i++)
(

for (j = 0; j < newcomp->acs_npts; j++)
{

rc = read(read_sock, &(newcomp->acs_pts[i][j][0]),
sizeof(float»;

if (rc < 0)
I

perror(‘ *model_read: reading pts”);
}
rc = read(read_sock,&(newcomp->acs_pts[i](j][l])1

Appendix D 290

www.manaraa.com

sizeof(floal));
if (rc < 0)
{

pcrrorC'model read: reading pts”);
)
rc = read(read_sock,&(newcomp->acs_pts [i] [j] [2]),

sizeof(float));
if (rc < 0)
(

perror(“modeLread: reading pts");
}

}/* — end for j — */
}/* — end for i — */
component = newcomp; I* reset pointers */

J I* — end for ii — */

component->next= (comp.data *)NULL; /* set last pointer to NULL */
return;
} /* — end model read — */
/
 *-------- — * j
/*
after_read.c
Function: after Model information is read from the server, the

tangents arc computed and the hermite geometry is
drawn

Variables: nu - parametric variable in u direction
nw - parametric variable in w direction

Coded by: Michele Grieshaber
Date: 06/10/91
•/
/ * ________________________________ ♦ j
^include <stdio.h>
^include “/u/knight/show/execs/showtime.h”

t* — function declarations — */
void messageO; I* — all of these external funcs are in B-spline module. Not included in this code — +/
void drawJiermiteO;
void acsjangentsO;
f* — end function declarations — */

extern MODEL * Model;

void afier_read (int nu, int nw)
(
I* — with the model structure full oth things must be done— */
acs_tangents(Model); /* calculate hermite tangents */

/* — draw the wireframe geometry — */
messageC‘DATA TRANSFER FROM SERVER SUCCESSFUL", 1);

Appendix D 291

www.manaraa.com

message(“CREATTNG WIRE FRAME GEOMETRY...", 1);
draw_hermite(Model,nu,nw);

return;
} !* — end after_rcad — */
/
» = = = = = ^ == = = = = =============^ ====, ==============*/
/*
clean_up.c
Function: checks to see if a current model exists and cleans it

out if one does
Memory allocation is performed for the Model.

Variables: none at the moment
Coded by: Michele Grieshaber
Date: 06/10/91
V
I

^include <stdio.h>
#include *Vu/knight/show/execs/showtime.hn

/* — function declarations — */
void clean_model();
void messageO;
/* — end function declarations — */

extern MODEL ’ Model;

void clean_up0
{
f* — check to see if current model is full — *1
if(Model != NULL)
{

messageC'CLEANING UP OLD MODELM);
clean_model(Model); /* clear out old Model */

}/* — end if Model — */

/* — allocate memory for the model — */
Model = (MODEL *)malloc(sizeof(MODEL));

return;
) [*— end clean_up— *1

Appendix D 292

www.manaraa.com

NAME: relay_attrib_list;4

TITLE: IC specific relay_attrib_list

PARAMETERS:
read_sock: data_in
header: data_in
LOCALS:
BODY:
/» =
Source Code Filename: to be determined
Special Considerations: NONE
Purpose:
This module is responsible for passing
members of an attribute list sent by another
client in the system to his GRIM widget. The
structure of the module is entirely dependent
on the corresponding module in the server,
which in turn is dependent on the way in which
the client sending the list outputs its data.
As an example, a module used to by the B-Spline
Toolkit to relay the attribute list sent by
ACSYNT is included in this m-spec.
Belongs to client application
= = = = = = = = = == = = = = = = = = = = = = «/
#define_BSD
#define size_of_name SO
#include <stdio.h>
#include <sys/lypes.h>
#include <sys/socketvar.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <nednet/in Ji>
#include <netdb.h>
#inc1ude <sys/un.h>
#include "../mysock2.h”

/* — function declarations — *1
void writeJieaderO;
void write_nameO;
char *read_nameO;
extern int Sock2;

void relay_attrib_list(int read_sock, HEADER header)
{
inti;
int comp_num;
char *comp_name;
char * responder,
char ’requester,

Appendix D 293

www.manaraa.com

int size_of_compname = 21;
/* — relay this information to the widget — */
(* header is the same as it was from the server... size_in_bytes = ncomps

... maj_opcode = 2
... min_opcode = 3

write_header(Sock2, header);
requester = read_name(read_sock, requester, size_of_name);

I* — read responding clientqs name and send it to the GRIM — */
responder = read_name(read_sock, responder, size_of_name);
write_name(Sock2, responder, size_of_name);

for(i = 0; i < header.size_in_bytes; i++)
(

if (read (read.sock, &comp_num, sizeof(int)) < 0)
t

penor(“ make_att_l: reading comp_num");
exit(l);J

/* — write comp num to grim — */
if (write(Sock2, &comp_num, sizeof(int)) < 0)
{

penorC‘relay_att_list: writing comp_num");
exit(l);

J

f* — write the word component to grim — */
comp_name = read_name(read_sock, comp_name, size_of_compname);
write_name(Sock2, comp_name, size_of_compname);

) f* — end for ncomps — */

free(comp_name);
free(responder);
free(rcquester);
return;
) I* — end relay_attrib_listc — */

Appendix D

www.manaraa.com

NAME: respond_to_buffer,9

TITLE: IC specific respond_to_buffer

PARAMETERS:
read_sock: data.in
header: datajn
LOCALS:
BODY:
r = = = = = ====^= = = = = = = = = = = = —
Source Code Filename: to be determined
Special Considerations: NONE
Purpose:
This module is responsible for responding
to a request for the current buffo1 data of the
application. The module will send data to a
module in the server which will read in the data
in the order it was sent from this module, and
transform it, before sending it, into the format
of the receiving client. Please note that the
header information set in this module is very
important as it will enable the server to
determine which module will accept this
buffer information.
This module is highly application dependent and
will be written on a case-by-case basis. As an
example, the module respond_to_buffer.c which is
part of the ACSYNT integrated client is included
in this m-spec. It is suggested that the header
defined in this example be used, unless a new
minor opcode is defined and carried through
for communication with the server and receiving
client.
Belongs to client application

#define_BSD
#define size_of_name SO
^include <stdio.h>
#include <sys/types.h>
#include <sys/socketvar.h>
^include <sys/socket.h>
#include <sys/uio.h>
#include <netinet/in.h>
#include <netdb.h>
#include “../mysock2.h"

void acs_hermiteO;
char *read_name();

void respond_to_iequest(int read_sock)

Appendix D 295

www.manaraa.com

{
char *rcquest_name;

t* — responds to the serverqs appeal for data — */
/* — read the requesterqs name off of the socket — */
request_name = read_name(read_sock, request_name, size_of_name);
acs_hermite(read_sockl request_name);

return;
J I* — end resp to bspline.c — */
/*— = = = = = = = = = = = = = = = = = = = * /
#define_BSD
#define size_of_name SO
#include <stdio.h>
#include <sys/types.h>
include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/uio.h>
#include <erTno.h>
#include “../mysock2.h"

/* — function declarations for RS/6000 — */
void gtgmpkO;
void gticmpO;
void wr_hermO;
void mid_hermO;

voidacs hermite(int read sock, char ̂ requester name)
t
int i,j;
int icomp, /* — counter for components — */

err, f* — error return code — */
ncomps, I* — number of components in model — */
comps[ISO], f* — array of component numbers — */
glob, /* — global flag — */
newnum, /* — update component number for glob sym — */
gsym, I* — global symmetry — */
comnum; /* — ? — */

static int nglob = 14;
HEADER header; /* — header used for protocol send to svr — */

I* — get the component list — */
(void) gtgmpk(&ncomps, comps);

/* — compensate for additional components if global symmetry exists — */
newnum = ncomps;
for (icomp = 0; icomp < ncomps; icomp++)
(

(void) gticmp(&nglob, &comps[icomp], &glob, &err);
f* — check for global symmetry — */
if (glob Is 0)

Appendix D

www.manaraa.com

{
newnum += 1;

}
J /* — end for icomp — */

f* — write out header to send to server— */
header.size_in_bytes = newnum;
header.maj_opcode = 2;
header.m in_opcode = 1;

if(write(read sock, &header, sizeof(HEADER)) < 0)
(

perror(“acs_hermite: writing header”);
exit(l);

)

/* — send back the requesterqs name — */
if (write(read_sock1 requester_name, size_of_name) < 0)
{

peiror(“acs_hennite: writing requester name”);
exit(l);

)

f* — initialize the starting component number— */
comnum = 1;

I* — loop through the components — */
for (icomp = 0; icomp < ncomps; icomp++)
[

midJierm(read_sock, comps[icomp]);
) f* — end for icomp — */

return;
) f* — end acs_hermite — */
/» ;===========r -----------------------
^define _BSD
#define sizc_of_name SO
#include <stdio.h>
^include <sysAypes.h>
#include <sys/socket.h>
#include <sys/sockctvar.h>
#include <sys/uio.h>
#include <ermo.h>
#include “.7mysock2.h"
/* — function declarations for RS/6000 — */
void gticmpO;
void gtccmpO;
void ckhmlsO;
void getintO;
void trancdO;
void rshmlsQ;

Appendix D

www.manaraa.com

void gtsmmtO;
void vt30;
void wr_hermO;

void mid henn(int read.sock, int comp num)
{
inti,j;
int icomp,
nxsect,
nppxs,
err,
dummy,
ncomps,
comps[lS0],
locsym,
glob,
newnum,
gsym,
comnum;
float ptJist[30][30][3],
gsymmt[4][4],
newpts[30][30][3];
float po[3],
pi[33;
static int nxsitm = 5,
nppitm = 6,
ngsym = 14,
nglob = 14;

f* — get the number of x-secs for the component— */
(void) gticmp(&nxsitm, &comp_num, &nxsect, &err);

/* — get the number of points per x-sec — */
(void) gticmp(&nppiun, &comp_num, &nppxs, &enr);

f* — check for local symmetry in the component — */
(void) ckhmls(&comp_num, Alocsym);

/* — get the points of the component — */
(void) getint (&comp_num, Anxsect, &nppxs, ptjist);

f* — reset the local symmetry of the component — *1
(void) rshmls(&comp_num, &locsym);

f* — transform the coordinates of the points — */
(void) trancd(&comp_num, &nxsect, &nppxs, ptjist);

for (i = 0; i < nxsect; i++)
(

for 0 = 0; j < nppxs; j++)
{

Appendix D

www.manaraa.com

) f*— end for j — */
} /*— end fori — *f
t* — invert the ordering of the points so the normals face out — */
for (i = 0; i < nxsect; i++)
(

for (j = 0; j < nppxs; j++)
{

newpts[j][i][0] = ptJist[nppxs-j-l] [i] [0];
newptsQ][i][l] = pt_list[nppxs-j-l][i][l];
newpts[j][ij[2] - ptJist[nppxs-j-1] [i] [2];

} /* — end for j — */
) I* — end fori — */

/* — write the component data to the server— */
wr_herm(read_sock, compjnum, ncomps, nxsect, nppxs, newpts ,&comnum);

f* — get hte global symmetry flag for the component— */
gticmp(&ngsym, &comp_num, &gsym, &err);
if((gsym >= 1) & (gsym <= 3))
{

/* — get the global symmetry matrix — */
(void) gtsmmt(&gsym, gsymmt);
j* — get the point to be transformed — */
for (i = 0; i < nxsect; i++)
{

for (j = 0; j < nppxs; j++)
t

pi[0] = pt_list[j][ij[0j;
pi[l] = ptjist|j][i][l];
pi[2] = pt_list(j][i][2];

/* — transform the point — *1
(void) vt3(&pi[0],&pi[l],&pi[2],gsymmt,&po[0],&po[l],&po[2]);

/* — get the transformed points — */
ptjist [j][i][0] =po[0];
ptjist |j][i][l] =po[l];
ptJist[j]Ei][2] =po[2];

) I* — end for j — */
} b — end fori — */
I* call routine to write all this wonderful information to server */
wr_herm(read_sock,comp_num,ncomps, nxsect^ippxs,ptJist,&comnum);

) f* — end if gysm — */
return;
) I*— end mid_herm.c — *1
I * -
#deflne _BSD
#include <stdio.h>
#include <sysAypes.h>
^include <sys/socket.h>
#include <sys/socketvar.h>

Appendix D 299

www.manaraa.com

#include <sys/uio.h>
#include <ermo.h>
#include “../tnysock2.h"

f* — function declarations for RS/6000 — */
void gtccmpO;

void wr_herm (int iead_sock, int comp, int ncomps, int nxsect, int nppxs,
float pt_lisl[][30][3], int *comnum)

[
int dummy;
inti.j;
int color,
err;
static int nxsitm = 5,
clitm = 11,
one = 1;
char comp_name[21];

/* — get the component name — */
/* bzero((char *)comp_name, sizeof(comp_name));*/
for (i = 0; i < 20; i++)
{

comp_name[i] = 1';
}

comp_name[20] = V)';

/*— get the component name for each component— */
(void) gtccmp(&one, &comp, comp_name, &err);
if (wriie(read_sock, comp_name, sizeof(comp_name)) < 0)
{

perror(“acs_hennite: write comp name”);
exit(l);

)

{* — write the component number— */
if (write(read_sock, comnum, sizeof(int)) < 0)
[

pem>r(Hacs_hennite: write comnum”);
exit(l);

}

/* — get the component color— */
(void) gticmp(&clitm, &comp, Acolor, &err);
if (write(read_sock, &color, sizeof(int)) < 0)
(

perrorC‘acs_hermite: write color”);
exit(l);

)

Appendix D

www.manaraa.com

I* — write the number of x-secs for the component — */
if (write(read sock, &nxsect, sizeof(int)) < 0)
{

perror(“acsJiennite: write nxsect “);
exit(l);

}

I* — write the number of points per cross section — */
if (write(read_sock, &nppxs, sizeof(int)) < 0)
{

perror{“acs_hermite: write nppxs “);
exit(I);

}

I* — write out the list of points — */
for (i = 0; i < nxsect; i++)
{

for (j = 0; j < nppxs; j++)
<

if(write(read_sock, &ptjist[jj[i][0], sizeof(float» < 0)
{

pcnor(“wr_herm: write ptjist 0\n”);
exit(l);

)
if(write(read_sock, &ptjistfj][i][l], sizeof(float» < 0)

t
perror(‘‘wr_herm: write pUist INn");
exit(l);

}
if(write(read_sock, &pt_list|j][i][2], sizeof(float» < 0)
{

penor{“wr_henn: write ptjist 2\n”);
exit(l);

}
) /* — end for j — */

) /* — end for i — *f

f* — icremcnt comnum — */
•comnum += 1;

return;
} f* — end wrJiermx — *1

Appendix D

www.manaraa.com

NAME: give_attrib_list;4

TITLE: IC give_attrib_list

PARAMETERS:
header: data_in
read_sock: data_in
LOCALS:
BODY:

 ..= = = ====, , . , 7r==
Source Code Filename: to be determined
Special Considerations: NONE
Purpose:
This module is responsible for supplying
an attribute list to send to clients in the
integrated system which request one. The order
and form in which this list is sent is important,
for it is how the server will read the data and
subsequently send it on to the requesting client
This module is application dependent and will
be written on a case-by-case basis. As an
example, the module give_attrib J is tc which
is included in the ACSYNT client application
is included in this m-spec. Please note the
relationship of the header definition with
the server and subsequently the serverqs
header definition for transmission of this
data to the responding client
Belongs to client application
 , smmaiaiss!isssv
Adeline _BSD
#define my_name "ACSYNT”
#define size_of_name SO
#include <stdio.h>
#include <sys/types.h>
^include <sys/socketvar.h>
ttinclude <sys/socket.h>
#include <sys/uio.h>
^include <netinet/in.h>
#include <netdb.h>
include “../mysock2.h”

I* — function declarations — *1
void write_headerO;
void write_nameO;
char *read_nameO;
void gtgmpkO;

void give_attrib_list(int read_sock)
{

Appendix D 302

www.manaraa.com

HEADER header, I* — header for protocol msg to server— *1

char cnameQ = “geometric component”;
int size_of_compname = 21;

f* — determine the cunent components of the model displayed — */
/*— get the component list— *!
(void) gtgmpk(&ncomps, comps);

f* — setup header— */
header.size_in_bytes = ncomps;
header.maj_opcode = 2;
header.min_opcode = 3;

f* — write header to the server — */
write_header(read_sock, header);

/* — read requesting clientqs name off of the socket— */
requester^ read_name(read_sock, requester, size_of_name);
write_name(read_sock, requester, size_of_name);

f* — read responding clientqs name off of the socket— */
responder= read_name(read_sock, responder, size_of_name);
write_name(read_sock, responder, size_of_name);

for (icomp = 0; icomp < ncomps; icomp++)

/ * — write the component number — *f
if (write(iead_sock, &comps[icomp], sizeof(int)) < 0)

)
write_name(readjsock, cname, size_of_compname);

) I* — end for icomp — */

free(requester);
free(responder);
return;
) t*— end give_auribJisLc — *1

int ncomps;
int icomp,
comps[150];
char * requester,
char * responder,

/* — number of components in model —
f* — counter for components — */
/* — array of component numbers — */
/* — name of requesting client — */
/* — name of responding client — */

{
perror("give_a_l: write icomp”);
exit(l);

Appendix D

www.manaraa.com

NAME: respond_attrib_item;7

TITLE: IC specific respond_attrib_item

PARAMETERS:
read_sock: data_in
header: datajn
LOCALS:
BODY:
j* ------------------------- ====s====
Source Code Filename: to be determined
Special Considerations: NONE
Purpose:
This module is responsible for furnishing
data as a reply to a request from a client who
has sent a list item identifier from his attribute
list If an attribute list exists for an application,
so must a module to handle the task of passing
item related data to a requesting client
As an example, the module respond_attribJtem.c
which belongs to the client application ACSYNT
is included in this m-spec. Special attention
should be paid to the header definitions, since
the server uses them to determine the module
which will relay this information to the client.
Belongs to client application
 ^ = = *== = = = --^ = - */
#define _BSD
#deftne size_of_name 50
#include <stdio.h>
#include <sysAypes.h>
#include <sys/socketvar.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <netinet/in.h>
#include <netdb.h>
#include ".Vmysock2.h”

/* — external functions — */
char *read_nameO;
void write_headerO;
void write.nameO;
void gticmpO;

void respond_attrib list(intread_sock)
{
int comp_num;
HEADER header;
char *requester_name;
int gsym.

Appendix D 304

www.manaraa.com

err;
sialic int ngsym * 14;

f* — read requesierqs name and send it later— */
requester.name = read_name(read_sock, requester_name, size_of_name);

f* — read the component number — */
if (read(read_sock, &comp_num, sizeof(int» < 0)
{

perror(“ral: reading comp_num");
exit(l);

}

f* — check if this component has global symmetry — */
(void) gticmp(&ngsym, &comp_num, Agsym, &err);
if (gsym != 0)
{

header.sizejn_bytes = 2;
) else (

header.sizejn_bytes = 1;
)

!* — set up header and send it— */
header.mtu_opcode = 2;
header.min_opcode = 1;
write_header(read_$ock, header);
write_name(read_sock, requester.name, size_of_namc);

I* — send component number to only chose that one — */
mid_hcrm(read_sock, comp_num);
return;
} /* — end repond_attrib_lisLc — */
r ====̂ ssm gaaaa8Maaaais=aB==m am 5=ai=^ ===================./
midherm.c is contained in the respond_to_rcquest module spec which appears before this m-spec.

/♦=======s==== = = = = = = m = = = = = = = = = = = = = ======= ====*/

Appendix D 305

www.manaraa.com

APPENDIX E: INTEGRATION SERVER STRUCTURE CHARTS / M-SPECS

Appendix E 306

www.manaraa.com

Appendix
E

■wv3
faaefratkn Server

dear andIhlflaHw Wt_*efcj
socket ”kradon

&«ecke(name

Mdc I ct KIM

IMenli*g_sock
»cfc_strac p

set «d

read mask

^ sock rim e
sock rtrnc f i

select mi
set made sockets In

readmask
a e n l ed

^reed_sock

n ek stru t Mick stru t

new sack Info

foew .sock r ^ r a d . n k

^9 *wk_*toc Jp wfĉ trnc
rend n e k

nek l i lk m i

■ndget update

write suck
n n i l «

Uio
-vj

rompare_ntmr
h»_*ch£rtruc
W who needs setjieader II write header
name L_ . I write ttfttne

www.manaraa.com

Appendix E

i
i

reso lv e h e a d e r ;4
N o s u e

read_sock header A
•ock_atruc a / read

sock**'''
headi sock elsock_ struc ̂

-o»,

headerJi aL opcodej l

/ \
heederji In header.n Inopcodej opcodej

headerji opcodej header.n opcode_ headerjt opcodê
header
read_sock
sock struc

 ̂ header.* Izejnbytes
 ̂sockjetruc
o reed_eock

relay > attrlbj list e~|

reedjtock
header
sock a true

sock
sock struc

del Its tra n s lfrom affrib
l is t

www.manaraa.com

put_d;2
No title

put_d

ĥeader
Oread aock
aoek atruc

put_d
actionname

readjaock
name_alze P /

jP / aock_atruc A

name
aock atruc

atruc

read name d Hat

C^name
header

write aock
write aock

;ompare_name
Jn_xchg_atruc
_aee_who_neede
name

write nameheader writ

Appendix E 309

www.manaraa.com

det_list;1
Notitle

del list

read sock
sock struc

dot list

cfname

ssnd_d list

road sock
O0*~ cllont_names _for xchg

posslble_xchg_ poMlblejtehg client names ‘ \q readjsofel
0 header \ o headerlent_names P/<S client names

determlnejf_cllent_corr
connected

write name list"write header

Appendix E 310

www.manaraa.com

request_data;3
No title

^ r««d_sock
 ̂header
^ aock_»truc

r e q u e a t j d a t i

mad nam

reapondar

raapond
requeateri)

raapondaock
■me alze

Omapondj

read nami aock dat

raapond

build headtr write head r

write nam

Appendix E 311

www.manaraa.com

Appendix
E

!

request_attrib_ list;2
No title

FSqnBT
attrib
list

mad sock

aock atruc

requeat_attrib
Hat

raquesterrf rea ponder

mad name write namemad name aock dot write headw write name

U)
ro

www.manaraa.com

Appendix
E

request_from _attrib_list;2
No title

read aock
aock atruc

write Hat
Jtem_

Identifier
v _ _ —-"«b / *0 Ham, retponae I

aock

read J 1st
ltem

Identifier
wck_
“ atruc requester

nX read
\ aock

requester Apsponse l e a d

reaponae
sock responder

sock
header 6

i sad name
i rite header sock detuild header

U)

www.manaraa.com

transfer_1 ;2
No title

transfer 1

header

sock struc

read sock

transfer 1

Appendix E 314

www.manaraa.com

relay_attrib_list_s;1
No title

T6iay_
attrib_
list s

y header

y sock_struc

p read_sock
\ >

relay_attrlb_
Iist_s

Appendix E 315

www.manaraa.com

NAME: serv;4

TITLE: IS main module

PARAMETERS:
LOCALS:
BODY:
f* i --------
Source Code Filename: serv.c
Special Considerations: NONE
Purpose: main program of the integraion server.
Establishes listening socket to accept connections
from integration clients
Belongs to integration server a==Maa8g8asas8=======a=,JBaBsasga==B=s ♦/
/
» = s = „ m m „ = = = g a s = = = = 5 = s = = = = = = = = = = B r . = g = = s = = i a = = = = „ s = = = = ; = = = = = a s a » /

/*
serv.c
Function: starts the server portion of the integrated system
Variables: none at the moment
Coded by: Michele Grieshaber
Date: 06/10/91
*/
/
♦ , g = = i ! = = = = = = s = = = = = „ a s i a = = = = = = i = ! B = = = = = = = = = * /

înclude <stdio.h>
#include u.ymysock2.h”
#define Port 2000
#define filename “exchange.buds”

f* supporting subroutines */
void sock_ear0;
void set_seI0;
void init_xchg0;
f* end supporting subroutines */

main 0
{
SOCK_INFO *sock_sUuc; /* structure containing socket data */

/* — zero the sock structure— */
bzero((char *)&sock_struc, sizeof(sock_struc));

f* — set the num_socks to zero — */
sock_struc = (SCXX_INFO *)malloc(sizeof(SOCK_INPO));
sock_struc->num_socks = 0;

f* — initialize the exchange data structure — */
init_xchg(filename);

Appendix E 316

www.manaraa.com

f* — create socket on which to listen — */
sock_ear(Port, sock_struc);

/* — set the select on — */
sel_sel(sock_struc);

} /* end main */

NAME: init_xchg;6

TITLE: IS init_xchg

PARAMETERS:
filename: dataJn
xchg_struct: data_out
num_xchgs: data.out

LOCALS:
injile
charac

BODY:
- --

Source Code Filename: init„xchg,c
Special Considerations: NONE
Purpose:
To initialize the xchg_struct which contains a
list of all relations which exist in the integrated system.
This structure is checked against the structure containing
the client names of the connected applications to determine
which will receive the name of the newest client in the
system for use his list of clients from whom data
can be requested.
Belongs to integration server

#include <stdio.h>
#include “../mysock2,h”

XCHG_STRUCT *xchg_struct;
int num.xchgs;

void init_xchg(char * filename)
{
FILE *in_file;
inti, j;
charcharac[l];

Appendix E 317

www.manaraa.com

if((in file = fopen(filename, “r”)) = (FILE *) NULL)
t

printf(“open_file: could not find file %s\n”, filename);
) else (

fscanf(in_file, "NUMBER OF EXCHANGES IN FILE = %d\n", &num_xchgs);
xchg_struct = (XCHG_STRUCT *) malloc (sizeof(XCHG_STRUCT) * num_xchgs);
for (i = 0; i < num_xchgs; i++)
{

fscanf(in„file,”vnSENDER = %[A/] %cVn”,xchg_struct[i].sender, charac);
fscanf(in_file,"RECEIVER * %[A/] %c", xchg_struct[i].receiver, charac);

} f* — end for i to num_xchgs — */
) j* — end if fcpen — */

return;
) /* — end init_xchg — */

NAME: sock_ear;4

TITLE: No title

PARAMETERS:
Port: data_in
sock_struc: datajn

LOCALS:
Sock
server
one
name

BODY:

Source Code Filename: sock_ear.c
Special Considerations: NONE
Purpose:
To create a socket to listen for connections
from clients in the integrated system.
Belongs to integration server
====="== = = = = « =«== = ^ = = = = = = = = = = */
/

 ,

I*
sock_ear.c
Function: opens a socket on which to listen for incoming connections

from clients wishing to join the integrated system.
Variables: Port • well known location of the server

sock_struc - structure containing socket information

Appendix E 318

www.manaraa.com

Coded by: Michele Grieshaber
D a le : 06/10/91
V
/

#define _BSD
#include <stdio.h>
#include <sys/types.h>
#include <sys/soclcet.h>
^include <netinet/in.h>
^include <netdb.h>
#include <sys/ioctl.h>
^include <ermo.h>
^include ‘*.7mysock2.h”

/ * supporting routines */
void sockJO;
SOCK_INFO *cl_list0;
/ * end supporting routines */

sock_ear(int Port, SOCK_INFO *sock_struc)
I
int Sock; /* socket on which listening occurs */
struct sock ad d rjn server; f* server internet information */
static int one = 1 ; /* set as a constant */
char nameQ = “listening socket”; I* for the client list in sock_struc *1

!*— open socket to listen on and use a stream connection — */
Sock = socket(AF_INET, SOCK_STREAM,0);
if (Sock < 0)
(

perror(“server: socket”);
exit(-3);

}

f* — clear the server structure — */
bzero((char *)&server, sizeof(server));

/* — initialize the server structure — */
server.sin_family = AF_INET;
server.sin_port = Port;

/* — set the socket so that it is reuseable — */
if (setsockopt(Sock,SOL_SOCKET,SO_REUSEADDR,&one,sizeof(one)) 1= 0)
t

penor(“setsockopt”);
}

f* — bind the Sock to the server */
if (bind(Sock,&server,sizeof(server)) < 0)
(

Appendix E 319

www.manaraa.com

perror(“servenbind”);
exii(-3);

}

f* — add the socket to the sock Jist — */
sock_l(Sock, sock_stnic);

/* — add the server to the client list— */
sock_struc = cl_list(sock_struc, name, sizeof(namc));

return;
} f* end sock_ear */

NAME: sock_I;6

TITLE: IS sockj

PARAMETERS:
listening_sock; datajn
sock_struc: datajn

LOCALS:
BODY:
/* = = = = = a = g = = = = a g = = = = = = = s g s = S S B a s8S

Source Code Filename: sockj.c
Special Considerations: NONE
Purpose:
To add a socket to the portion of the socket
information structure, sock_struc, which contains
socket descriptor information (sock_struc.sock_lisl).
Belongs to integration server
■ = *1
/*_________________ * I
I*
sockj.c
Function: adds the most recently connected socket to the socket

listing inside the SOCK_INFO structure (sock_struc).
Variables: new_sock - socket descriptor of connected sock

sock_struc - structure into which new_sock goes
Coded by: Michele Grieshaber
Date: 06/01/91
*1
/» r̂ BaaS5================<./
#include <stdio.h>
^include “.7mysock2.h”

Appendix E 320

www.manaraa.com

sock l(int new sock, SOCKJNFO *sock struc)
{
/* — add new socket to list — */
sock_struc->num_socks+= 1;

/*— add the socket to the socket array — */
sock_struc->sockJist[sock_struc->num_socks -1] = new_sock;

return;
} f* — end sock_l.c — */

NAME: cljisl;7

TITLE: IS cljist

PARAMETERS:
sock_struc: data_out
sock_struc: data_in
socket_name: datajn
name_size: datajn

LOCALS:
size

BODY:
I* „ ---=
Source Code Filename: cljist-c
Special Considerations: NONE
Purpose:
To add an application name to the portion of
the socket information structure, sock_struc, which
contains client name (sock_struc.client_name).
This enables the server to associate a client name
with a corresponding socket descriptor in the
sock_struc. This allows cross referencing to occur,
meaning if the client name is known, so is the socket
descriptor, and vice-versa.
Belongs to integration server
= */
/

 = = = = = = = = - - = = = = = = = = = = = = = * /

/*
cljistc
Function: places the name returned by the client in the client

list portion of the SOCKJNFO structure (sock_struc)
Variables: sock_struc - structure containing socket info

Appendix E 321

www.manaraa.com

name - name of the connected client
sizc„of_name - size of the clientqs name

Coded by: Michele Grieshaber
Date: 06/10/91
*1
/
* ^ = = = = = = == = = = = = = = = = = ™ == = = = = = = = = = = = = = * /
#define_BSD
#include <stdio.h>
#inc1ude <ermo.h>
#include *\./mysock2.h”

SOCK INFO*cl list(SOCK_INFO *sock_struc, char namc[], int size of name)
{
static int size = 20; /* size of character array */

/* — add the name of the current socket to the clientjist — */

I* — clear out the array entry — */
bzero((char *)sock_struc->client_list[sock_struc->num_socks-l], size);
sprintf(sock_struc->client_list[sock_struc->num_socks-l],

“%s”, name);

retum(sock_struc);
) /*— end cl Jist.c — */

NAME: set_sel;6

TITLE: No Ude

PARAMETERS:
sock_struc: data_in
LOCALS: read_mask
to
i
rc
lsock
enmo
BODY:

Source Code Filename: set_sel.c
Special Consideradons: NONE
Purpose:
To set the read mask to contain all known sockets
in the integrated system, and then to check for incoming
signals on these sockets. If no signal occurs the process
repeats itself. When a signal does register its socket

Appendix E 322

www.manaraa.com

is determined in eval_sel.c.
Belongs to integration server
===^= = ^ = = = = = := := = = = = = = = = = = = */
/
*= = = = = = = = = = = S B S = = = = = = = = g = = = aa s s a a = = = = = a c s = = g = = = = = = = = = = ;s s * /

/*
set_sel.c
Function: sets the select mode on for the server to screen incoming

connections
Variables: sock_struc - structure containing socket info
Coded by: Michele Grieshaber
Date: 06/10/91
*/
f

#define_BSD
#define TRUE 1
#defme FALSE 0
#include <sidio.h>
^include <sys/types.h>
^include <sys/sockeUi>
#include <sys/time.h>
#include <nednet/in.h>
#include <netdb.h>
#include <ermo.h>
^include “../mysock2.h”

/* — supporting routines— */
void is_eval_sel();
fd_setset_maskO;
f* — end supporting routines — */

void set_sel(SOCK_INFO *sock_struc)
{
fd_set read_mask; f* mask which filters sockets for reading */
struct timeval to; /* time structure for select timeout */
int i, re; /* rc is the return code variable */
intlsock; f* product of a socket sort — largest sock*/
extern int ermo; f* error number for debug purposes */

listen(sock_struc->sock_list[0], 5); f* set the listening sock to listen */

do
{

/*— compare the mask against all available sockets •
/* — also keep track of the largest socket value for later use------*/
/ • — but to do that, set sock initially to zero-------------------------*/
Isock = 0;
read_mask = set_mask(&lsock, sock_struc);
I* — set the timeout values for the select — */
bzero((char *)&to, sizeof(to»;

Appendix E 323

www.manaraa.com

to.tv_sec = 5;

t* — hang out in the select — */
re = select(lsock+l, &read_mask, (fd_set *)0, (fd_set *)0, &lo);
if{rc < 0)
(

pemr(“select");
continue;

) else if (re > 0) {
/*— evaluate the response to select if any — */
is_eval_sel(sock_struc, read.mask);

} f* — end if re — *1

) while(TRUE);

return;
} f* — end set_sel — *1

NAME: is_eval_sel;5

TITLE: IS is_eval_sel

PARAMETERS:
read_mask: datajn
sock_struc: data+control_in

LOCALS:
BODY:
r ------------ =
Source Code Filename: is_eval_sel
Special Considerations: NONE
Purpose:
Once an incoming signal has been detected,
this function determines on which socket it occurred
and either accepts a new connection (listening socket)
or sends it on to have the HEADER read by another
routine (any other socket besides the listening sock).
Belongs to integration server

,■ ■ ■ ■ */
/
* * j

I*
is_eval_sel.c
Function: evaluates the value of the read mask returned from the

select call in set_sel.
If the signal comes in on the listening socket, the
client is requesting to be accepted for connection by

Appendix E 324

www.manaraa.com

the server.
If the signal comes on a socket that has already been
established (accepted), the header is read by cl.rdmsg
and appropriate action is taken.

Variables: sock_struc - structure containing socket info
read.mask - indicates which sockets have info on
them.

Coded by: Michele Grieshaber
Date: 06/10/91
V
/

:======,:== = ==a=gB===MBa======sg=====s=====;s=====gsB=====*/
^define .BSD
#define TRUE 1
#define FALSE 0
#include <stdio.h>
^include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
^include <sys/ioctl.h>
#include <fcntl.h>
^include <sys/file.h>
include <signal.h>
#include <sys/selecLh>
#include <ermo.h>
#inctude “,ymysock2.h”

f* — supporting routines — */
void rd.msgO;
void ask.msg0;
void new.sock.infoO;
/*— end supporting routines — */

eval sel(SOCK_INFO *sock_struc, fd set read.mask)
{
int new.sock; /* new socket accepted by the server */
inti; /* just your ordinary everyday integer */
struct sockaddr.in sin; /* structure containing client ip stuff */
int length = sizeof(sin); /* lenght of above structure */

{* — check to see if the read.mask matches any of the available sockets —*/
if(FD_ISSET(sock struc->sock.list[0], &read_mask))
t

/* — accept the new connection — */
if((new_sock = accept(sock.struc->sockJist[0],&sin,&length)) < 0)
{

perror(“Servenaccept”);
exit(-3);

J
/* — add new socket to the sock_list — */

Appendix E 325

www.manaraa.com

/* — send a message to the newly connected client to get his name
for incorporation into the client list contained in the server — */

new_sock_info(new_sock, sock.struc);

) else {
f* — check the other connected sockets one at a time for info — */
for(i = 1; i < sock struc->num socks; i++)
I

if (FD_ISSET(sock_struc->sockJist[i], &read_mask))
(
/* — read message on socket — */
rd_msg(sock_stnic->sock_list[i], sock_struc);

}/*— end if— */
}/*— end for — */

}/*— end if— */
return;
] /* — end is_eval_sel.c — */

NAME; new_sock_info;3

TITLE: IS new_sock_info

PARAMETERS:
new.sock: datajn
sock.struc: data_in

LOCALS:
BODY:
/» ---
Source Code Filename: new.sock Jnfox
Special Considerations: NONE
Purpose:
To request the application name from the
application who has just recently connected to
the server.

#include <stdio.h>
#include “Jmysock2.h"

void sockJO;
void ask.msgO;

void new.sockjnfofint new.sock, SOCKJNFO *sock_stnic)
{
f* — put new sock into socket structure — */
sockJ (new.sock, sock.struc);

Appendix E 326

www.manaraa.com

/* — request client name from new client as an identifier— */
ask_msg(sock_struc);

return;
}/* — end new_sock_info — */

NAME; ask_msg;4

TITLE: IS ask.msg

PARAMETERS:
new_sock: datajn
sock_struc: datajn

LOCALS:
header
w_sock

BODY:
/* = =
Source Code Filename: ask_msg.c
Special Considerations: NONE
Purpose:
To request the name of the application
who has just connected to the server.
Belongs to integration server

/
» — _ _ _ _ _ » j

I*
ask_msg.c
Function: to ask the newly connected clients for information on

themselves that can be placed in a client list located
in the SOCKJNFO strucutre for later use.

Variables: sock_struc - structure(SOCKJNFO) with sock info
Coded by: Michele Orieshaber
Date: 06/10/91
*/
/* -= ==========g=========»/
#define _BSD
#define TRUE 1
ttdcfinc FALSE 0
#include <stdio.h>
#include <sys/types.h>
^include <sys/socketvar.h>
^include <sys/sockeLh>

Appendix E 327

www.manaraa.com

#include <sys/uio.h>
#include <crmo.h>
#include “ Vmysock2.h"

f* — external function calls — */
void write_headerO;
/* — end external functions — */

ask_msg(SOCK_INFO *sock struc)
{
HEADER header; /* contains size and major and minor opcode info */
int w_sock; /* socket to which message is sent */

header.size_in_bytes = 0;
header.maj_opcode = 0;
header.m in_opcode = 0;

!* — send this info to the socket correspondinf to ACS YNT — *f
w_sock s sock_stnic->sock_list[sock_struc->num_socks -1];
write_headcr(w_sock, header);

return;
) /*— end ask_msg.c — */

NAME: id_msg;4

TITLE: IS rd_msg

PARAMETERS:
read_sock: data_in
sock_struc: data_in

LOCALS:
nval
header

BODY:
/* = = = = = -— ^ ^ - -------
Source Code Filename: rd_msg.c
Special Considerations: NONE
Purpose:
If the signal is of a normal type, to read
a headers worth of data from the socket, and if
the signal is a disconnect, to close the socket
which conesponds to the disconnecting client.
Belongs to integration server
= = ==== = = ------------

Appendix E 328

www.manaraa.com

/
>*/

/*
rd_msg.c
Function: reads the header from the information coming in on a

socket.
Header info then sent to a routine which does a switch
on the major and minor opcodes contained in the header.

Variables: read.sock - socket on which info is waiting
sock_struc - structure containing socket info

Coded by: Michele Grieshaber
Date: 06/10/91
• /
/
---------------== = ™ = = = = = = = = = = - = — = = = = = = = = = ========/
ttdefinc _BSD
^define TRUE 1
#define FALSE 0
include <stdio.h>
#include <sys/lypes.h>
#include <sys/socketh>
^include <sys/socketvar.h>
#include <sys/uio.h>
#include <ermo.h>
#include “../mysock2.h"

/* — supporting routines — */
void sw_op0;
void close_sock0;
/* — end supporting routines — */

rd_msg(int read.sock, SOCK_INFO *sock struc)
{
int nval; /* return code from read */
HEADER header, /* header read from the socket Contains info */

f* such as size of info on socket major opcode */
I* and minor opcode------------------------------------ */

I* — read the header from the information sitting on the socket— */
nval = read(read_sock, &header, sizeof(HEADER)>;
if(nval = -1)
{

perror(“rd_msg: read”);
exit(l);

} else if(nval == 0) {
/* — go to routine to close connection and take socket out of list - */
close_sock(read_sock, sock_struc);

} else (
/* — send to sw-op to determine action associated with opcode — */
sw_op(header, sock_struc, read_sock);

}/• — end if— */

Appendix E 329

www.manaraa.com

return;
) /* — end rd_msg.c — */

NAME: close_sock;4

TITLE: IS close.sock

PARAMETERS:
read_sock: data_in
sock_struc: data_in

LOCALS:

action

BODY:
/ * = = = = =
Source Code Filename: close_sock.c
Special Considerations: NONE
Purpose:
To delete a closed socket from the array
of sockets in the socket information socket.
Belongs to integration server

f* close_sock.c
Function: deletes a socket from the socket list when a client is
closed.
Arguments: int dead_sock — socket that has been closed
SOCKJNFO *sock_struc — structure containing number of
sockets and the socket list
Coded by: Michele Grieshaber
Date: 06/05/91
V
/»=r== = = = === = = = = = = = = =====3== = :
#include <stdio.h>
#include “.7mysock2.h”
#define ADD 1
#define DELETE 0

void widget_updateO;

close_sock(int dead.sock, SOCK_INFO *sock_struc)
{
int i j;
int action;

Appendix E 330

www.manaraa.com

I* — loop thru socket list to find entry which matches dead socket — */
for (i = 0; i < sock_struc->num_socks; i++)
{

if(sock struc->sock_list{i] = dead.sock)
{

I* — before deleting it from the list, send delete msg to widget—*/
action = DELETE;
widget_update(action, sock_stnic->client_list[i], sock.struc);
for(j = i; j < (sock_struc->num_socks -1); j++)
{

sock_struc->sock_list[j] « sock_struc->sockjist[j+l];
] I* —end for j — */
i = sock.struc->num_socks;
sock_struc->num_socks -= 1;

} /* — end if dead.sock — */
}/* — end fori — */

return;
} f* — end close.sock.c — */

NAME: widget_update;S

TITLE; IS widget.update

PARAMETERS:
action: datajn
name: datajn
sock.struc: datajn

LOCALS:
BODY:
I* =
Source Code Filename: widget_update
Special Considerations: NONE
Purpose:
To determine which clients need to be
informed that a client in their selection list
has disconnected from the integrated system.
Belongs to integration server
== = = = = ========== = = = = ============= = = »/
#define_BSD
#define TRUE 1
tfdefine FALSE 0
#define size.of.name 50
#define ADD 1
#deflne DELETE 0
//include <stdio.h>

Appendix E 331

www.manaraa.com

include <sysAypes.h>
#include <sys/socket.h>
înclude <sys/socketvar.h>

#include <sys/uio.h>
^include <ermo.h>
#include “../mysock2.h”
#definc size_of_name SO

extern XCHG_STRUCT *xchg_struct;
extern int num_xchgs;
void write_headerO;
void write_nameO;

void widget_update(int action, char *name, SOCK_INFO *sock_struc)
{
int i j;
intn = 0;
HEADER header,

header.size_in_bytes = action;
header.maj_opcode = 2;
header.min_opcode = 0;

/* — match the new name against senders in the xchg_struct — */
for (i = 0; i < num_xchgs; i++)
{

if(strcmp(xchg_struct[i].sender, name) = 0)
{

for(j = 1; j < sock struc->num socks; j++)
{

if(strcmp(xchg_stnict[i].receiver,sock_stnic->client_lisi|j])=0)
{

f* — send the new name to the client interested — */
write_header(sock_struc->sockJist|j], header);
write_name(sock_struc->sockJist|j], name, size_of_name);

) /* — end if strcmp receiver— */
) f* — end for j — */

} /* — end strcmp sender— */
} f* — end for i — */

return;
) /*— end widget_update.c — */

Appendix E

www.manaraa.com

NAME: resolve_header,6

TITLE: IS specific resolvejieader

PARAMETERS:
header: datajn
read.sock: datajn
sock.struc: datajn

LOCALS:
BODY:
/» = = = = = = = = = ====̂ = = = = = = =
Source Code Filename: resolveJieaderc
Special Considerations: NONE
Purpose:
Based on the major opcode portion of the
header (header.maj.opcode) and then on the minor
opcode portion of die header (header.min_opcode),
this module will determine how to evaluate each
message received by a socket of the server.
Belongs to integration server

/

f*
resolveJieaderx
Function: based on the major and minor opcodes contained in the

header structure passed in from the rd.msg routine,
this routine (using switch statements) will determine
the appropriate action to take

Variables: header - contains size and maj and minor opcodes
sock.struc - structure containing socket info
read.sock - socket on which information resides

Coded by: Michele Grieshaber
Date: 06/10/91
V
I
»=============̂ ■=====̂ ss==gg,gs= :=B:„ s=B======== ===gg==st===============V/
#define _BSD
ttdefine TRUE 1
#define FALSE 0
#define size_of_name 50
#define ADD 1
#define DELETE 0
înclude <stdio.h>

it include <sys/types.h>
include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/uio.h>
#include <ermo.h>

Appendix E 333

www.manaraa.com

#include “.ymysock2.h"
/* — supporting routines — */
SOCKJNFO *put_dO;
void detJistO;
void request_dataO;
void acsynt_to_bsplineO;
char *read_name();
void write_nameO;
void write_headerO;
void request_attrib_listO;
void relay_attrib_list_sO;
void request_from_attrib_listO;
f* — end supporting routines — */

resolve_header(HEADER header, SOCK_INFO '“sock.struc, int read sock)
{
/* — begin major opcode switch-- */
switch(header.maj opcode)
{

caseO:
/* — begin minor opcode switch for major case 0 ------------------- */
switch(header.min.opcode)
(

caseO:
/* — read client name and send to client list — */
sock_struc = put_cl(read_sock, header, sock.struc);

break;

case 1;
/* — gives list of exchange requests to client — */
/* — determine the client who requested info — */
del_list(iead_sock, sock.struc);

break;

case 2;
break;

default:
printf(“resolve_headen not a valid minor opcodeNn”);

break;
) I* — end switch(min_opcode) — */
/* — end minor opcode switch for major case 0 ---------------------- */

break;

case 1:
switch(header.min_opcode)
{

caseO:
break;

case 1:

Appendix E

www.manaraa.com

requesl.data (read_sock, header, sock.struc);
break;

case 3:
request_attrib_list(read_sock, sock.struc);

break;

case 4:
request_from_atlrib_lisl(read_sock, sock.struc);

break;

default
printf(“resolve_header: not a valid minor opcode for major = IV ’);

break;
) f — end switch minor for major =1 — */

break;

case 2;
switch(header.min_opcode)
{

caseO:
break;

case 1:
acsynt.to_bspiine(read_sock, header, sock.struc);

break;

case 3:
relay.attrib.Ii st_s(read_sock, sock.struc, header, si ze.in.bytes);

break;

default
printfOesolveJieaden not a valid minor opcode for major = 2\n”);

break;
) f* — end switch min.opcode for case major=2 — */

break;

default:
printfC'resolve.headen not a valid major opcode V);

break;

}/* — end switch(maj_opcode) — */
j*— end major opcode switch-- */

return;
) /*— end resolve_header.c — V

Appendix E

www.manaraa.com

NAME: put_cl;6

TITLE: IS put_cl

PARAMETERS:
header: datajn
read_sock: datajn
sock_struc: data_inout

LOCALS:
name
action

BODY:
/»----- ---- n ^ m =B==BSMM^ a=„ Sm aB=======
Source Code Filename: put_cl.c
Special Considerations: NONE
Purpose:
To read in the name of an application who
is responding to the request generated after
its connection has been accepted by the server.
The name is sent to all clients in the system
to whom it can supply data.
Belongs to integration server
 = = = m j = = ^
#define _BSD
#define ADD 1
#include <stdio.h>
#include <sys/types.h>
^include <sys/socket.h>
^include <sys/socketvar.h>
#include <sys/uio.h>
^include <ermo.h>
#include “Jmysock2.h”

/*— supporting routines — */
SOCKJNFO *cljist0;
char *read_nameO:
void widget_update();

SOCK_INFO *put_cl(int read_sock, HEADER header, SOCKJNFO *sock_struc)
{
char *name;
int action;

if(header.sizejn bytes >50)
(

return;
}

Appendix E 336

www.manaraa.com

f* — read client name from the msg on socket from client — */
name = read_name(read_sock, name, header.size_in_bytes);

/* — add client name to list kept by server— */
sock_struc = clJisl(sock_struc, name, header.size_in_bytes);

/* — send name to clients which can use it in widget — */
action = ADD;
widgeLupdate(action, name, sock.struc);
free(name);

retum(sock_struc);
} I* — end put_cl.c — */

NAME; det_list;5

TITLE: IS detjist

PARAMETERS:
read.sock: data_in
sock.struc: datajn

LOCALS:
BODY:
f* — — — ——— — — — —
Source Code Filename: detjistx
Special Considerations: NONE
Purpose:
To compile a list of exchange clients to
send to a client requesting the list He needs
to know from whom he can request data in the
integrated system.
Belongs to integration server
 */
#include <stdio.h>
#include *‘../mysock2.h"

f* — external function calls — */
void send.clJistO;
/* — end external functions — */

void det_list(int rcad.sock, SOCK INFO * sock.struc)
(
inti;

I* — gives list of exchange requests to client— */
/* — determine the client who requested info — */

Appendix E 337

www.manaraa.com

for (i = 1; i < sock stmc->num_socks; i++)
{

if(sock_stmc->sock_list[i] == read.sock)
{

scnd_cl_list(read_sock, sock_struc->client_list[i],
sock.struc);
i = sock_struc->num_socks;

) I* — end if read.sock — */
) /* — end for num.socks — *1

return;
) /* — end detjistx — */

NAME: send_cl_Iist;5

TITLE: IS s e n d .c l j is i

PARAMETERS:
read.sock: data.in
name: data.in
sock.struc: data.in

LOCALS:
BODY:
/ * „ „

Source Code Filename: send.cl.list
Special Considerations: NONE
Purpose:
Used by the server to compile a list
of exchange client names and send them to
the requesting client.
Belongs to integration server
 =========== v
#define .BSD
#define TRUE 1
#define FALSE 0
#include <stdio.h>
#include <sysAypes.h>
#include <sys/socket.h>
#include <sys/sockelvar.h>
^include <sys/uio.h>
#include <ermo.h>
#include “../mysock2.h”
#include <string.h>

extern XCHG.STRUCT *xchg_struct;
extern int num.xchgs;

Appendix E 338

www.manaraa.com

void write_headerO;
void send_cl_list(int sock, char client_name[], SO C K JN FO *sock_struc)
{
int ij;
int n = 0;
HEADER header;
struct list {

char listjtem[80];
struct list*pl;

J *xchgjist;

/* — match up the client name with the xchg list — */
for (i = 0; i < num xchgs; i++)
{

if(strcmp(xchg_stiuct[i] .receiver ,client_name)» 0)
{

/*— need to check the match against connected clients — */
for (j = 1; j < sock_struc->num_socks; j++)
{

if(strcmp(xchg_struct[ij.sender, sock_stmc->client_list|j]) = 0)
{

if (n = 0)
(

xchg_list = (struct list *)malIoc(sizeof(struct list));
) else (

xchg_list->pl = (struct list *) malloc(sizeof(struct list));
xchgjist = xchg_list->pl;

J
bzero((char *)xchg_list->list_item, 80);
sprintffxchg list->list item. xchg_struct[i].sender);
xchg_list->pl = NULL;
n += 1;

} /* — end if strcmp — */
} /•— endfor— */

} f* — end if strcmp — */
) f* — end for num_xchgs — V

I* — build a message to send to the client containing info — *1
header.size_in_bytes = n; (* — indicates the number of infos — */
header.maj_opcode=0;
header.m in_opcode = 2;

write_header(sock, header);

for (i = 0; i < n; i++)
{

if(write(sockl xchg_list->list_item, 50) < 0)
{

perror(“sendl: write header4');
exit(l);

)

Appendix E

www.manaraa.com

xchgjist = xchg_Iist->pl;
}

return;
) f* — end send_cl_list — */

NAME: request_data;4

TITLE: IS request_data

PARAMETERS:
read_sock: data_in
header: data_in
sock_struc: datajn

LOCALS:
responder
requester
rcspond_sock

BODY:
I*------------- = = = ==== =:-------- ------- - = = = = « =
Source Code Filename: request_data.c
Special Considerations: NONE
Purpose:
To relay the request for buffer data from
the requesting client to the responding client.
Belongs to integration server
= = = = = — = ^ = == ^ = ==== ^ -̂ == = — = = V
Adeline _BSD
#define size_of_name SO
#include <stdio.h>
^include <sysAypes.h>
^include <sys/sockeLh>
#include <sys/socketvar.h>
^include <sys/uio.h>
#include <ermo.h>
#include ",./mysock2.h”

/* — supporting routines — */
char *read_name();
void write.nameO;
void write_headerO;
int sock_detO;

void request_data(int read_sock, HEADER header, SOCK INFO *sock_struc)
t

Appendix E 340

www.manaraa.com

char "responder, "requester;
ini respond_sock;

/* — read info from client on requested data exchange — "/
responder = read_name (read_sock, responder, header.size_in_bytes);

/* — read the name of the application requesting data — */
requester = read_name(read_sock, requester, header.size_in_bytes);

/* — determine the socket upon which requested comms — "/
respond_sock = sock_det(responder, sock_struc);

/* — request info be sent from requested client — "/
header.size_in_bytes = 0;
header.maj_opcode = 3;
header.min_opcode = 1;
writeJieader(respond_sock, header);

/* — send it the requesterqs name — "/
write_name(request_sock, requester, size_of_name);
free(requester);
free(responder);

return;
} /*— end request_data.c — */

NAME: sock_det;4

TITLE: IS sock.det

PARAMETERS:
responder: datajn
respond_sock: data_out

LOCALS:
i
next_sock

BODY:
 --

Source Code Filename: sock_del.c
Special Considerations: NONE
Purpose:
To determine a socket identifier based
on the connected applicationqs name.
Belongs to integration server

 "/

Appendix E 341

www.manaraa.com

include <stdio.h>
#include “.7mysock2.h”
#define TRUE 1
#define FALSE 0

int sock_det(char‘name, SOCK INFO *sock struc)
{
inti;
int next_sock;

/*— determine the socket number that corresponds to the name— */
for (i s 1; i < sock struc->num_socks; i++)
{

if(strcmp(sock struc->client_list[i], name) = 0)
{
next_sock = sock_struc->sockJ ist[i];
i = sock_struc->num_socks;
}

)

retum(next_sock);
] /* — end sock_detc — */

NAME: request_attrib_list;4

TITLE: IS request_attrib_list

PARAMETERS:
read_sock: data_in
sockjstruc: datajn

LOCALS:
header
response.sock
responder
requester

BODY:
f* = = = ---- -----
Source Code Filename: request_aitrib_iist.c
Special Considerations: NONE
Purpose:
To request the attribute list from the
responding client
Belongs to integration server

 »/
#define _BSD

Appendix E 342

www.manaraa.com

#definc size_of_name SO
#include <stdio.h>
#include <sys/types.h>
include <sys/socketvar.h>
înclude <sys/socket.h>

#include <sys/uio.h>
#include <netinet/in.h>
^include <neidb.h>
#include u.7mysock2.h”

I* — function declarations — */
void writeJieaderO;
void write_nameO;
char *read_nameO;
intsock_detO;

void request_attrib_list(int read sock, SOCK_INFO sock_struc)
{
HEADER header,
int response_sock;
char * responder,
char ̂ requester,

f* — for now get the component list from the client and send it on — */
header.size_in_bytes = 0;
header,maj_opcode = 3;
headerjnin_opcode = 3;

I* — read the requesterqs name — */
requester= read_name(read_sock, requester, size_of_name);

f* — read next client name from requester— */
responder = read_name(read_sock, responder, size_of_name);
response_sock = sock_det(responder, sock_struc);

write_header(response_sock, header);
write_name(response_sock, requester, size_of_name);
write_name(tesponse_sock, responder, size_of_name);

free(responder);
free(requester);

return;
} f* — end rcquest_attrib_list.c — */

Appendix E 343

www.manaraa.com

NAME: rcquest_from_allrib_list;6

TITLE: IS request_from_aUrib_Iist

PARAMETERS:
read.sock: dataJn
sock_struc: datajn

LOCALS:
responder
requester
respond_sock
list_num
header

BODY:
/» —
Source Code Filename: request_from_aitrib_list.c
Special Considerations: NONE
Purpose:
To request a specific list item from the
attribute list previously supplied by the responding
client.
Belongs to integration server

--------------------- ========== *i
#define_BSD
#define size_of_name 50
#include <stdio.h>
#include <sysAypes.h>
#include <sys/socketvar.h>
#include <sys/socket.h>
#include <sys/uio.h>
^include <netinet/in.h>
#include <netdb.h>
#include H.ymysock2.h”

f* — external functions — */
char *read_nameO;
void write_header();
void write.nameO;
intsock_detO;

void request_fiom_attrib_list(int read sock, SOCK_INFO sock_struc)
{
char*responder, '"requester,
int respond_sock;
int lisLnum;
HEADER header;

I* —read source name— */

Appendix E 344

www.manaraa.com

resonder ■= read_name(read_sock, responder, size_of_name);
requester = read_name(read_sock, requester, size_of_name);

I* —determine the socket for source — */
respond_sock = sock_det(respond_name, sock_struc);

/* — define and send header — */
header.sizejn_bytes = 0;
header.maj.opcode = 3;
header. min_opcode = 4;
write_header(respond_sock, header);

I* — write the requester id — */
write_name(respondj50ck, requester, size_of_name);

f* — read the component number identifier and send it — */
if (read(read_sock, &list_num, sizeof(int)) < 0)
(

perrorC'reading list_num");
exit(l);

}
if (write(iespond_sock, &Iist_num, sizeof(int)) < 0)
{
pemor(“write Iist_num");

exit(l);
}

return;
) /* — end request_from_attribJist.c — *1

NAME: transfer_l;6

TITLE: IS specific transferal

PARAMETERS:
header: data_in
sock_stmc: data_in
read_soc: data_in

LOCALS:
BODY:
I* -------- --------------------------------- ---
Source Code Filename: to be determined
Special Considerations: NONE
Purpose:
This is just one example of where the
transformation functions need to be in the

Appendix E 345

www.manaraa.com

server. This location corresponds to the
B-Spline Toolkit/ACSYNT example where the
transformation function acsynt_to_bspIine
is found As an example, that module will
be included in this m-spec.
Belongs to integration server

#define _BSD
#deflne size_of_name SO
#include <stdio,h>
înclude <sys/types.h>

^include <sys/socket.h>
înclude <sys/socketvar.h>

^include <sys/uio.h>
#include <crmo.h>
#include “.ymysock2.1T

/* — supporting routines — */
int sock_detO;
void from_acs_to_bO;
char *read_nameO;
void write_nameO;
void writeJieaderO;

voidacsynt to_bspline(int read sock, HEADER header, SOCKJNFO *sock struc)
(
char "'name;
intj, request_sock;
int ncomps;

/* — receive the name of the application requesting — */
name = read_name(read_sock, name, size_of_name);

!* — receive data from ACSYNT for xfer to B-SPLINE — */
ncomps = header.size_in_bytes;

J* — set new header, except for header.size_in_bytes which is ncomps — */
header,maj_opcode = 2;
header.min_opcode = 1;
request_sock = sock_det(name, sock_struc);
write_header(request_sock, header);

I* do this for the number of components that exist — */
for (j = 0; j < ncomps; j++)
{

from_acs_lo_b(read_sock, request_sock);
)/* — end for j — */
free(name);
return;
} /* — end acsynt_to_bsp!ine.c — */

Appendix E 346

www.manaraa.com

«= = = = = = ™ = = r------- 1------------------------"= = =■■"■ ■■ — — =— */
from_acs_lo_b.c

Function: receives information from the ACS YNT module and passes
it directly to the B_Sp!ine Toolkit

Variables: read_sock - socket on which info is being read
write_sock - socket which is being written to

Coded by: Michele Grieshaber
Date: 06/10/91
•/
/

#define_BSD
Adeline TRUE 1
#define FALSE 0
#include <stdio.h>
^include <sys/types.h>
^include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/uio.h>
^include <ermo.h>
#include “„/mysock2.h”
/* *1

char *read_nameO;
void write_nameO;

void from_acs_to_b(int read_sock, int write sock)
{
char *comp_name;
in ti.j.k ;
int comp.number,
color,
rc,
nxsect,
nppxs;
static int size_of_name = 21;
float pt; f* points describing the component */

f*— read and write comp name *1
comp_name = read_name(read_sock, comp_name, size_of_name);

wiite_name(write_sock, comp_name, sizc_of_name);
/*— read and write component number — */
rc = read(read_sock, &comp_numbcr, sizeof(int));
if(rc < 0)
(

perror(“from_acs_to_b: read comp_number\n”);
exit(l);

}

Appendix E 347

www.manaraa.com

if(write(write_sock,&comp_number,sizeof(int)) < 0)/* send num i
{

perror("fatb: write comp_number “);
exit(l);

]

/* — read and write component color — */
rc = read(read_sock, &color, sizeof(int)>;
if(rc < 0)
{

perror(“from_acs_to_b: read coloiNn”);
exit(l);

)
if(write(write_sock,&coIor,sizeof(int)) < 0) /* send comp color */
{

penor(“fatb: write color’*);
exit(l);

}

f* — read and write number of cross sections — */
rc = read(read_sock, & nxsect, sizeof(int));
if(rc < 0)
{

perror(“from_acs_to_b: read nxseclNn”);
exit(l);

)
if(write(write_sock,&nxsect, sizeof(int)) < 0) f* send x sec num*/
{

perror(“fatb: write nxsect”);
exit(l);

}

/* — read and write number of points per x section — */
rc = read(read_sock, &nppxs, sizeof(int));
if(rc < 0)
{

peiror(“from_acs_to_b: read nppxs\n”);
exit(l);

}
if(write(write sock.&nppxs, sizeof(int)) < 0) /* send pts/x_sec */
{

peiror("fatb: write nppxs”);
xit(l);

}

/* — read and write point data— *f
for (i = 0; i< nxsect; i++)
{

for(j = 0; j < nppxs; j++)
{

for(k = 0;k< 3; k++)

Appendix E

www.manaraa.com

{
rc = read(read_sock, &pi, sizeof(float));
if(rc < 0)
(

perror(“firom_acs_to_b: read pt”);
cxit(l);

}

if(write(write_sock, Apt, sizeof(float)) < 0)
[

penorC‘from_acs_to_b: write pt”);
exit<l>;

)
)/* — end fork — */

) /*— end fori — */
) f*— end fori — */
return;
} /* — end from_acs_to_b — */

NAME: relay_attrib_list_s;5

TITLE: IS specific relay_attrib_list_s

PARAMETERS:
header.size_in_bytes: data_in
sock_struc: data_in
read_sock: datajn
LOCALS:
BODY:
f* „ „ „ „ „ „ „ „ „ „ „ „
Source Code Filename: to be determined
Special Considerations: NONE
Purpose:
This module is the server version which
relays a list of attributes sent from one client,
to another.
This module is dependent on the application, and must
be written for each client sending an attribute
list to other clients in the system. The structure
of this module is entirely dependent on the way
in which the client sending the list, transmits
his data.
As an example, the module relay_attrib_lisLc,
which is part of the server library related to
the B-Spline Toolkit/ACSYNT relationship, is
included in this m-spec.
Belongs to integration server
= sa8 aa s a s = 8 s s s =!= s a s a i s = = = = = ^ _, »/

Appendix E 349

www.manaraa.com

#define _BSD
^define size_of_namc SO
#inciude <stdio.h>
#include <sysAypes.h>
#include <sys/socketvar.h>
^include <sys/socket.h>
#include <sys/uio.h>
^include <netinei/in.h>
#include <netdb.h>
#include “,7mysock2.h”

/* — function declarations — */
void write_headerO;
void write_nameO;
char *read_nameO;
intsock_detO;

void relay_attrib_list_s(int read.sock, SOCK_INFO *sock_struc, int ncomps)
{
inti;
char *comp_name;
int size_of_compname = 21;
char “requester;
char * responder;
intrequestjsock;
HEADER header,
int comp_num;

I* — read requesting and responding clientqs name — */
requester = read_name(read_sock, requester, size_of_name);
responder = read_name(read_sock, responder, size_of_name);

f* — determine the requesting socket number — */
request_sock = sock_det(requester, sock_stnic);

header.size_in_bytes = ncomps;
header.maj_opcode = 2;
header.min„opcode = 3;
write_header(request_sock, header);
write_name(request_sock, requester, size_of_name);
write_name(request_sock, responder, size_of_name);

/* — loop thru reads for the number of components------*/
for (i = 0; i < ncomps; i++)
{

if (read (read_sock, &comp_num, sizeof(int)) < 0)
{

perrar(“ relay_att_l: reading comp_num”);
exit(l);

}

Appendix E

www.manaraa.com

if (write(request_sock, &comp_num, sizeof(int)) < 0)
{

perror(“relay_attJ: writing comp_num”);
exit(l);

]
comp.name - read_name(read_sock, comp_name, sizc_of_compname);
write_name{request_sock, comp_name, size_of_compname);

} /* — end for ncomps — */

free(requester);
free(responder);
frcc(comp_name);

return;
} f*— end relay_attribJist_s.c — *1

Appendix E

www.manaraa.com

APPENDIX F; UTIL1TIES.ETC.

Appendix F

www.manaraa.com

This appendix contains miscellaneous files and utilities necessary for complete

understanding of the integration system. One important note is on the directories in

which each component of the prototype integration system was developed. This

information may be necessary when studying the source code of the components. The

source code is located in the module specifications found in the each component's

appendix. The components and their directories are:

integration server /u/michele/grim/server
ACSYNT client application /u/michele/grim/acsynt
ACSYNT GRIM widget (grim2) /u/michele/grim/grim2
B-Spline client application /u/michele/grim/apsock
and /u/michele/grim/execs
B-Spline GRIM widget (grimmy) /u/michele/grim/grimmy
Utility functions /u/michele/grim/utility

Included in this appendix are the scripts necessary to run the two prototype clients, a

sample relations file which is used by the server to define data exchange possibilities,

and a header file called mysock2.h which contains data structures used by all

components of the integration system.

Appendix F 353

www.manaraa.com

r = g = „ = s g = M = = g = = = = = = 1J^ = s = = = = = = = = = = = = = = g = = = = s8 8 a a s g s = = = = = = */

This is the RACS exec

This is the exec which will start the B-Spline Toolkit Client

It will start the GRIM widget (grimmy) in the background, sleep a few seconds, then invoke the B-Spline
Toolkit using acsnubs as the executable.

../grimmy/grimmy &
sleep 3
./acsnubs

This is the RACSYNT exec

This is the exec which will start the ACSYNT Client.

It will start the GRIM widget (grim2) in the background, sleep a few seconds, then invoke ACSYNT using
acsynt as the executable.

/ * = = = = = = = = = ™ = = « ™ ™ = = = = = = = = = = = = = * /

../grimmy2/grim2 &
sleep 3
./acsynt

Appendix F 354

www.manaraa.com

This file contains typedefs used in the integration client and server.

CODED BY: Michele Grieshaber
DATE: May 28,1991

typedef struct {
int size_in_bytes;
int maj_opcode;
int min_opcode;

} HEADER;

typedef struct (
int num_socks;
int sockjist[20];
char client_list[S0][50];

} SOCK_INFO;

typedef struct {
char sender[50];
char receiverfSOJ;

} XCHG.STRUCT;

typedef struct list_type {
char list_item[50];
struct list.type ’•'pi;

] LIST;

Appendix F

www.manaraa.com

NAME: read_namc;4

TITLE: Utility read_namcd

PARAMETERS:
read_sock: datajn
name_size: datajn
name: datajnout
LOCALS: nval

BODY:
t* = = = = = = = =

Source Code Filename: iead_name.c

Special Considerations: NONE

Purpose:
To read a character string (usually a name)
off of a specified socket identifier.

This is a utility function

#deflne_BSD
#include <stdio.h>
#include <sysAypes.h>
^include <sys/socket.h>
ffinclude <sys/socketvar.h>
#include <sys/uio.h>
^include <ermo.h>

char *read_name(int sock, char ’name, int name_size)
(
int nval; I* — return code value for read — */

/*— allocate space for the name— */
name = (char *)mal!oc(name_size);

/* — read name — */
nval = read(sock, name, name_size);
if (nval < 0)
{
perror(“read_name: read");
exit(l);
)
retum(name);
) f* — end read_name.c — */

Appendix F

www.manaraa.com

NAME: write_header;4

TITLE: Utility writejieaderd

PARAMETERS:
header: datajn
write_sock: datajn
LOCALS:
BODY:
/*

Source Code Filename: write_header.c

Special Considerations: NONE

Purpose:
To write a header to a specified socket
identifier.

This is a utility function used by all components

#define_BSD
#include <stdio.h>
#include <sys/types.h>
include <sys/socket,h>
^include <sys/socketvar.h>
#include <sys/uio.h>
#include <eimo.h>
#include “.7mysock2.h”

void write_header(int sock, HEADER header)
(
if(write(sock, &header, sizeof(HEADER» < 0)
{

perror(“write header: write header");
exit(l);

}
return;
} /* — end writejieader.c — */

Appendix F

www.manaraa.com

NAME: write_name;4

TITLE: Utility write_name

PARAMETERS:
name: data_in
write_sock: data_in
name.size: datajn
LOCALS:
BODY:
r
Source Code Filename: write_name.c

Special Considerations: NONE

Purpose:
To write a character string (usually a name)
to a specified socket identifier.

This is a utility

#define_BSD
#include <stdio.h>
#include <sysAypes.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
^include <sys/uio.h>
#include <ermo.h>

void write_name(int sock, char *name, int name size)
{

if(write(sock, name, name_size) < 0)
{

perror(“write name: write name”);
exit(l);

}

return;
) /* — end write_name.c — */

Appendix F

www.manaraa.com

VITA

As a child, Michele Grieshaber spent much of her time doing arts and crafts. Some of

her greatest accomplishments include a surrealist drawing of a clown done in a Crayola

medium, a key chain made from gimp (stringy plastic stuff that melts if left in a hot

car), and a set of wind chimes made from driftwood, sea shells, and dental floss. Not

many people realize the artistic potential of dental floss. Life was not always easy for a

struggling young artist, so when it came time to plan for the future, she decided to train

herself for a more practical career. In the fall of 1983, she was accepted into the

engineering curriculum of Virginia Polytechnic Institute and State University. During

her senior year, she was one of four participants in the first exchange program between

Virginia Tech and the Universite de Technologie de Compiegne, FRANCE. A

semester after her return to the U.S., she received her Bachelor's degree. She then

completed her Masters in 1988, just before leaving for Paris to study at Ecole Centrale

des Arts et Manufactures as a Fulbright Fellow. Although tempted to remain in Paris

to study under Fifi Van Gogh (third cousin twice removed of Vince), a renowned artist

in dental floss sculpture, Michele returned to Virginia Tech to pursue a PhD.

Vita 359

