INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a compiete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g.,, maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI
University Microfilms International
A Bell & Howell infarmation Company

300 North Zeeb Road. Ann Arbor, Mt 48106-1346 USA
313/761-4700 800/521-0600

Order Number 9214579

A computer-aided software engineering toolkit for the
integration of CAD/CAM application software in a network
environment

Grieshaber, Michele Marie, Ph.D.
Virginia Polytechnic Institute and State University, 1991

U-M-1

300 N, Zeeb Rd.
Ann Arbor, MI 48106

A COMPUTER-AIDED SOFTWARE ENGINEERING TOOLKIT
FOR THE INTEGRATION OF CAD/CAM
APPLICATION SOFTWARE IN A NETWORK ENVIRONMENT

by

Michele M. Grieshaber
Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
in

Mechanical Engineering

Approved:

o) Ay M’

Dr. A. Myklepst, Chairman

&%A""‘ P24

r. J. R. Mahan Dr. M. Deisenroth
Lot U oot L ftrrr rre
Dr.R. West {(/ Dr. S. Jayaram

November 21, 1991

Blacksburg, Virginia

A Computer-Aided Software Engineering Toolkit for the
Integration of CAD/CAM Application Software in a Network Environment

by
Michele Marie Grieshaber
(Abstract)

Much progress has been made in recent years in the development of Computer-Aided
Design and Computer-Aided Manufacturing (CAD/CAM) tools for engineering design,
analysis, and manufacturing. Unfortunately, most of these CAD/CAM applications
were constructed independently and without standardization. In essence, they automate
a single aspect of design, analysis, or manufacturing and cannot be combined to form a
cohesive environment, since integration among applications was not addressed during

the design phase of CAD/CAM application software creation.

In view of this problem, a novel approach is suggested for software integration of
applications in a network environment. The distributed integration solution described
in this dissertation employs a new "integration client/server” relationship, where the
integration server is the core of the system, providing functions to translate or
transform data between applications. The integration client consists of an interface
with the server, a CAD/CAM application, and a user interface with the integrated
system called the GRIM (GRaphical Interface Manager). There is only one integration

server in the system, but there may be an unlimited number of clients.

The solution created for distributed integration is implemented in a Computer-Aided
Software Engineering (CASE) workbench, geared specifically toward the generation of
integration systems. This workbench is known as the CAD/CAM CASE Workbench,

and includes an integration solution as well as standard CASE tools. The integration

solution contains several tools which will aid a system designer in generating
integration systems for CAD/CAM applications. Included is the distributed integration
solution described in this dissertation. The distributed integration solution is designed
to facilitate the semi-automatic generation of an integration system. It consists of an
integration server at the center of the integration system which manages the exchange
of data among the integration clients. The integration clients are the CAD/CAM
applications in the context of the integration system. To use the distributed integration
solution, the integration system designer will customize portions of the structure charts,
data dictionary, and module specifications contained in the workbench according to the
needs of the applications programs and generate C-source code defining the integration

system.

Using the distributed integration solution, the user will be able to effect data requests
for applications, using the GRIM to interact with the system. All data exchanges are
request driven. In addition to the distributed integration solution, this research includes
a prototype integrated system which allows data to be requested from one application,
and translated to a second for display and manipulation. The prototype was tested in a

distributed environment and the results are described.

WLED

Funding for this research was provided by the IBM Corporation. I would like to thank
Al Bracco, Alan Levit, and Tony Fiore for their help and support during the course of
this project. I would also like to express my sincere thanks to Paul Clarke for helping

me in more ways than he knows.

It is impossible for me to express the gratitude I have for the guidance I have received
from my two advisors, without whom, my education and my outlook would not have
been the same. Dr. J. R. Mahan served as my master's thesis advisor and has been
instrumental in my development as an engineer and as a citizen of the world. His
foresight and encouragement made it possible for me to spend two separate sejours in
France. If he had not handed me an application for the Fulbright scholarship I may
never have applied. My current advisor, Dr. Arvid Myklebust, has shown me the true
meaning of the term doctor in philosophy. The constant encouragement he offered me
over the past four years has helped me to become confident and capable in more than
just my field of study. In addition, I would like to thank the members of my
committee for their willingness to share knowledge and advice with me both before and

during the course of this research.

I would further like to thank two individuals for getting me through long nights in the
lab. Ludwig von Beethoven for composing his sixth and ninth symphonies and Martin

Grunau for cheering me up and calming me down.

And finally, to my family for the love and support they have given to me during my
time at VPI and throughout my life.

Acknowledgements iv

1.0 INTRODUCTIONciniuiiniriinniaciinniusisssimsaseassrasssnscassssresssssssisnssas 1
2.0 LITERATURE REVIEWcccuitiiiiiiniiiiniiniienieisiiinincasiinsrsesrsesaes 6
2.1 Integration of CAD/CAM Applicationscccevriniiierniinineniciseinaanss 6
2.2 CASE and Its Role in Integration........cccvvvuveerenererirnrsssnsasercasasssncanss 10
2.3 SUMMATY .iuiriueniiinrereinieitiiiiesiiiiictsiritirnrsiessiserasssasssssasssssnsnones 12
3.0 THE CAD/CAM CASE WORKBENCH.........ccovtuiireirmrenerinniecnniennnnae, 13
3.1 CAD/CAM CASE Workbench Backgroundcecirnieiiinniiinnnennns 13
3.2 Purpose of the CAD/CAM CASE Workbenchccceceiiiiiiiiiiiiirnnnnnns 14
3.2.1 Categories of INteEration......ccovvvvrinvennrinirrirersiiecisrsisisernnenss 16
4.0 THE DISTRIBUTED INTEGRATION SOLUTIONccociivinierncencnrnnanss 19
4.1 The Integration Client........c...cvvuviinreiiniaiiieiiiniiecnrsesssniessesasseesss 30
4.1.1 AP/SOCK INterface......cocoverririeiaciinriinnrniniisiinirirarvacreneness 33
;1. 1.2 The CAD ApPPlCAtionccoeninvuriieniniisniraseseinininicaiiinnenne 34
4.1.3 The GRIM Widget.....ccieiiiiriiiiiimirerieinereiinesreiicensaraieeisinns 36
4.2 The Integration SEIVETcccivviiriieirsiiierernrorsusnssesssisecarssrasssssserses 43
4,3 COmMMUNICALIONS .ueuirreriiirsrnrecrersesrirmisiiiiiiiisttiiesrerrrreearassasass 47
5.0 STRUCTURED ANALYSIS AND STRUCTURED DESIGNccccvuuraene 49
5.1 Structured Analysis and Requirements Specificationc.covvvuvacenensen 49
5.2 Structured DeSign......ovvieeereerreiiieiiniieriiisiiiiessiisinersasinsassssarssssncs 53
6.0 INTEGRATION TOOLKITccoruieurusennsernsersinsrrenninessescasessassasanses 58
6.1 Data Flow Perspective of the Distributed Integration Solution................ 63
6.2 The Distributed integration solution in Structure Charts............cccrvveeeen 72
6.2.1 GRIM Structure ChartS.........cocveiiiinriiicnrciiceieninsiisreensenass 73
6.2.2 Client Application Structure Chartscccceeveiniieiierncnniiniiiinien, 79

Table of Contents

6.2.3 Integration Server Structure Chams.......ccovviiviiiiiinecninireiicnnnans 87

7.0 DISTRIBUTED INTEGRATION SOLUTION PROTOTYPE............cevvuu.e. 95
7.1 The ACSYNT Client Applicationccccveiriiiiiiiieiiiieiineiiesiriicisnenn. 98
7.2 B-Spline Client ApPlicationccvviueurierrernieieicerncosrriosreniisetsossses 104
7.3 The Prototype Integration Server........cccevviiiiiiiiiniiiiiiiiiniesiresiressennes 109
7.4 Data Exchange in the Prototypical Integration System..........ccccevvrvennees 111
8.0 CONCLUSIONSccvuiniieniiieninsesttairsinterusscsirasssstionrasasrssssssassessses 119
REFERENCEScciiiiiiiiiiiitiiiiiiiieiinenerrecsriasrsanessstnsnsassssssassssssssssins 123
APPENDIX A: DATA DICTIONARYcccoiuiiiriininimeniiinieniciisniniiessssaciss 126
APPENDIX B: DATA FLOW DIAGRAMS / P-SPECS.........coccovvvinvninsinnnans 136
APPENDIX C: GRIM STRUCTURE CHARTS / M-SPECS...........ccccivivienn, 201

APPENDIX D: CLIENT APPLICATION STRUCTURE CHARTS / M-

) 2 G P 251
APPENDIX E: INTEGRATION SERVER STRUCTURE CHARTS / M-

3 2700 PP 306
APPENDIX F: UTILITIES,ETC.....ccieriiiiiiiiiiiiiicinissniisescsserasssenenns 352
2 1 - N 359

Table of Contents vi

Figure 1:

Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:

List of Figures

LIST OF FIGURES

Paradigm for the generation of CAD/CAM integration systems

13511112 3 [ORI 2
CAD/CAM CASE Workbench,cvivuiuieimieiiniiniiiisiiiiienrneenna. 15
Integration client/server relationship.cocovvviiiiiiiiniiinciiiniiiranan, 24
Motif toolkit above XtIntrinsics above X.....ccveiviuiiiiiiiiiiiiiininiiienen 26
Client AP/SOCK connected to application by proprietary interface........ 29
Client data routed through AP/SOCK Interface.c.c.cevvnvvirinarenanns, 32
Basic GRIM Widget.........ociiiiiiiriiiiiiinieearrneenrerneeernressscssarssasons 39
Sample transfer function.ccovvreiiiiiiniiiieiiiniiiriiiietinsinseenes 46
Software development life-CyCle. ...cooeerniiiiiiieniiiiiiaiiiiiniiiicininen 50

Components of a data flow diagram.coeviiiiiiriiiieniiinnen.. 52

The Yourdon structured design process [Page88].ccciveirreinnnn. 54

An example showing structure chart components.........cc.coeiivinennnians 57

Integration toolkit in CASE environment.cccoevvrvvevrniinieninsnes 60

Context Diagram of the integration SyStem.ccoevevvninresieinvanenns 65

Data flow diagram of the integration server and clients - DFD 0. 67

Data flow diagram of the client interface - DFD 1........covcvivierevnnnnns 69

Data flow diagram of the integration server - DFD 2.1.cc..e.... 1

GRIM widget displaying attribute list.cccvviriiicieieninninnnanss 80

Sample relation file entries.civiveieiniircirireriiiiiiiinieiiicarneneienn, 89

Request/TeSponse SEQUENCE. 1.vviresssrarinressssasnsassssnsstsssnrassasasssssss 102

B-Spline MODEL data StrUCtUTE.cccovtiiiirnrnrernssasassenarerarsssanes 105

Prototype client applications and integration server.ccoeveevunnens 113

The ACSYNT client application.ccovveiniiiiiiiiniverersssssernecinnns 114

vii

Figure 24: The B-Spline client application prototype.........ccoccoviiiiiiiiniianianens 116
Figure 25: B-Spline and ACSYNT clients running on the same workstation, 118

List of Figures viii

Table 1: GRIM opcode table..........cocoviieimiiiiiiiiiiiiiiiiiiiiiiiiii e eeneae 78
Table 2: Client application opcode table.........c.cvviviiiiiieniiiiiiiiininiienennn. 84
Table 3: Integration server opcode table.......c.cceeeiiiirvrineniriirienioccrerienrnracnses 92
Table 4: The ACSYNT client application opcode table.ccooeveiiininiieannnns 103
Table 5: The B-Spline client application opcode table............ovvveiircninirnenenn. 108
Table 6: Integration server prototype opcode table.c.ocvvviiiiiiniiiniiicniannn, 112
List of Tables ix

DUCTI

Much progress has been made in recent years in the development of Computer-Aided
Design and Computer-Aided Manufacturing (CAD/CAM) tools for engineering design,
analysis, and manufacturing. Unfortunately, most of these CAD/CAM applications
were constructed independently and without standardization. In essence, they automate
a single aspect of design, analysis, or manufacturing and cannot be combined to form a
cohesive environment, since integration among applications was not addressed during
the design phase of CAD/CAM application software creation. Additional refinement of
individual tools will only provide diminishing returns until the sharing of data, and
possibly functions, among them is also automated within the framework of an

integrated environment.

The problem of software integration is difficult enough to solve on a single platform;
the existence of software applications residing on different workstations in a network
configuration significantly complicates the task. The first question addressed in this
research is "What is an effective integration solution for dissimilar CAD software
applications in a network environment?" The answer to this question involves CASE
technology and the second question which arises is "How can successive
implementations of this distributed integration solution be enabled in a semi-automatic
fashion using CASE tools?" Although this is the order in which the questions are
addressed in this dissertation, the overall problem which was resolved is the one which
deals with the paradigm for generation of integration systems. Figure 1 depicts this
paradigm and shows a CASE workbench, This workbench contains a toolkit designed
to facilitate the task of an integration system designer by generating source code which

describes an integration system. The ultimate goal of this research is to create a CASE

Imtroduction 1

CAD
APPLICATION

PROGRAMS
OTHER MANUFACTURIN
DESIGN 1 APPL.ICATION
SUPPORT PROGRAMS
SOFTWARE
CAD/CAM
INTEGRATION
SYSTEM
A
/ N\
a
I
[
|
|
| SYSTEM
SPECIFICATIONS (P
CASE INTEGRATION
TQOLKIT
1
DE%}GN INTEGRATION 4 AUTOMATIC INTEGRATION
NAL VSIS SYSTEM CODE SYSTEM
ATUOLS GENERATOR /GENERATIO DESIGNER

CAD/CAM_INTEGRATION
INTERFACE

COMPUTER-AIDED SQOFTWARE
ENGINEERING (CASE)
WORKBENCH FOR
CAD/CAM

Figure 1: Paradigm for the generation of CAD/CAM integration systems [Penn91].

Introduction

workbench capable of generating integration systems. In order to achieve this goal, it
is necessary to develop a scheme for integration in a network environment which will

lend itself to development into a set of CASE tools.

While the ultimate idea of CASE is to be able to specify design requirements and
generate source code from those specifications, the state of the art has not quite reached
that point. In reality, there may be some necessary degree of manual interaction in the
development process, be it writing pseudo-code or actual code, even though the overall
code structure may be generated. The function of a CASE tool is to leverage the
development process, ideally automating it, but not necessarily. This is a critical point
because integration may require, on the part of the integration system designers, in-
depth knowledge of all applications targeted for incorporation in the system. This
includes knowledge of the various data structures used in the applications. This
condition is also imposed by the creators of an earlier integration enabler called the
Environment for Application Software Integration and Execution (EASIE) [Rowe88].
They state "[data specific information] can only be provided by the program experts or
application programmers who are intimately familiar with the codes being integrated."

They also state that "no software tools can substitute for this knowledge."

Though development of the initial system relies heavily on knowledgeable individuals,
maintenance of the resulting system will not require the same expertise, since the
system will have been analyzed, designed, and implemented with the aid of a
CAD/CAM CASE Workbeﬁch {(Penn91]. The CAD/CAM CASE Workbenchis a
CASE workbench which has been modified to include a toolkit used primarily for the
generation of integration systems for CAD/CAM applications. Important information
on the parameters of the integrated system will therefore be available from the database

Introduction 3

contained in the workbench. In addition, the workbench will enable programmers to
reverse engineer, at both the design and the analysis levels, the codes to be integrated

and extract necessary data from them to assist in producing the integrated environment.

The CAD/CAM CASE Workbench, originally specified by Pennington [Penn91], was
designed to address the integration of engineering CAD/CAM applications. This is a
novel approach to integration, considering that there are relatively few commercially
available CASE systems geared toward the requirements of engineering; the bulk of the
systems are business related. The CASE Integration Toolkit, contained in this
workbench, will contain tools to implement the distributed integration solution
described in this document. These tools will be in the form of generic data flow
diagrams and structure charts which can be tailored to fit the integrated system through
use of analysis and design tools and source code generators present in the CASE
workbench. The resulting integration system will be described by these generic data
flow diagrams (DFD's) and structure charts, along with other DFD's and structure
charts created by the integration system designer. The final integration system will be
generated from these structure charts, module specifications (which describe each
module of a structure chart), and the data dictionary by using the C-source code

generator included in the CASE workbench.

The following discussions explore the question of integration in terms of the integration
mechanism, the feasibility of a system utilizing this mechanism in a network
environment, and the ease with which an integration system designer can employ
specific CASE tools, including the CAD/CAM Integration Toolkit to analyze, design,
and realize the final integrated system.

Introduction 4

The research conducted for this dissertation has the following goals:

1) identify mechanisms for interclient communication for integration

2) design CASE tools which will facilitate the generation of integration systems for
CAD/CAM applications in a network environment

3) create a distributed integration solution which is effective in managing the
exchange of data among applications in the integration system and which lends
itself to developments into a set of CASE tools

4) demonstrate feasibility of the integration solution by using two CAD
applications running in a distributed environment

The structure of the dissertation is as follows: a survey of pertinent literature which
explores past work on the integration of CAD/CAM applications and CASE tools as a
means to achieve integration, an overview of how the integration solution created in
this research will fit into the CAD/CAM CASE workbench philosophy, an in-depth
description of the integration solution, a discussion of the development process for the
integration process explained using data flow diagrams, a discussion of the format of
the tools created to effect the integration solution, and concluding remarks about the
research presented in this dissertation. This is followed by details on the
implementation of the distributed integration solution and a prototype integration

system using this workbench for two aircraft design CAD programs.

Introduction 5

2.0 LITERATURE REVIEW

The literature related to the integration of CAD/CAM applications is extensive and
varies with respect to the levels of integration achieved. A few relevant papers are

reviewed here,

i M licati

In July 1990 Pehnington [Mykl90] conducted an industry-wide survey on integration,
The survey results indicated that there does not seem to be a consensus on the exact
interpretation of the term "integration". To some of the respondents, integration meant
the sharing of information (data) among applications, even if that required the manual
reentry of data. Pennington points out that of the respondents to the CAD/CAM
integration survey, those who reported the most successful and flexible systems were
companies who employed a common database to effect the integration. Two further
conclusions obtained from the survey show that source code is readily available fork
most of the CAD/CAM applications targeted for integration. This availability is a
result of in-house development of much analysis code. Furthermore, it was found that
there is a growing trend in companies toward stand-alone workstations in a networked

environment.

To date, most of the work on integration has been done using neutral formats such as
IGES (Initial Graphics Exchange Specification). Liewald and Kencott [Liew82],
though advocates of integration using such formats, were also cognizant of the
limitations of this method on the goal of total integration. According to a report

prepared by the Boeing Commercial Airplane Company [Brau85], some of the more

Literature Review 6

serious IGES flaws include its inefficient file structure, its inflexible data definitions,
and its orientation toward graphical representation of a product’s design. Farish
[Fari®0) conveys some of the frustration companies face when using neutral formats.
He reports on five experimental projects sponsored by the SMMT (Society of Motor
Manufacturers and Traders) which were conducted among several well-known British
companies. The goal of the test was to swap CAD information in the best-known data
exchange format, IGES. Farish reports that although "IGES can handle geometry, it is

not reliable at maintaining the integrity of associated information."

In response to the need to resolve the limitations of IGES, a formal study called the
PDES Initiation Effort was begun in 1985 [Furl90]. The objective of PDES (now
called the Product Data Exchange using STEP) is to develop a neutral exchange
medium capable of completely representing product data. STEP is the proposed
international exchange standard. Unfortunately, the PDES exchange standard will not
be available until sometime after 1995, and therefore does not address the immediate

need for a solution to integration problems.

As a result of the disappointing results obtained with neutral formats, the recent trend
has been towards other means of integration, mainly databases. Encarnacao [EncaS0]
contends that when contrasted with classical file systems (where every file contains data
whose structure matches exactly the requirements of one specific application program),
database systems provide for the integration of data for all applications within a
corporation. Furthermore, data redundancy, which causes storage overhead and update

problems, is avoided and only a minimum of data must be replicated by the system.

Literature Review 7

Several specific and sophisticated examples of integration via database exist. Fenves et
al. [Fenv90] developed an integrated software environment for building design and
construction which integrates seven independent, computational programs. They claim
that integrated systems in industry achieve a high level of data integration by tieing
CAD/CAM software and analysis programs together through a shared database - a
premise which they use in the development of their integrated system. Colton and
Dascanino [Colt91] designed and implemented an integrated, intelligent design
environment. The system enables the engineer to design custom mechanical parts and
store related data in a database which is checked by an expert system to ensure
manufacturability and assembly. It is important to note that this is a dedicated
integrated system, meaning that only tools employed in mechanical design are included
in this environment. Lu, Myklebust, and War [Lu86] developed an interface which
writes geometric representations of helicopters directly into a computer-aided design
system database via the Geometry Interface Module (GIM). This system is an excellent
example of proprietary interface use as well, since the geometric models described by
the analysis portion of the integrated system were subsequently viewed in CADAM.
Reiss [Reis90] introduced a method of integration which combines message passing in a
UNIX environment with databases. The major disadvantage of Reiss' approach is that
to add new tools to the system, it may be necessary to modify existing tools to be able
to interpret the new messages generated by the additional programs. Meyers [Meye91]
comments on this fact in his article and expands his discussion to cover canonical
representations of data structures, wherein a common structure for all data models
exists. The idea of having all tools operate on the same data structures is attractive;
however, in order to implement this in an integration scheme, existing applications
must be rewritten to utilize the new data representation. Although this type of
representation may be useful in the future, it does not address the current needs of the

Literature Review 8

system integrator. According to Christman [Chri84], automobile companies are prime
users of integrated CAD/CAM systems with common databases. He contends that this
approach allows several engineers to access design data and work on the same part
simultaneously. This type of database interaction enables designers to practice
concurrent engineering. As an example of the effectiveness of concurrent engineering,
Chrysler has reported productivity improvements that range from 4:1 to as high as
70:1.

Although it seems that a great deal of success has been achieved by companies who
take advantage of common databases, it is only fair to admit that no comprehensive
database solution exists at the moment. Commercially available relational databases are
not equipped to meet the demands of an engineering application. Part of the reason for
this was addressed by Kim, Lorie, McNabb, and Plouffe [Kim84] who state that the
primary difference between transactions in an engineering environment and those in
conventional business applications is that an engineering transaction typically lasts
much longer and can effectively disable the database from being accessed by any other
user of the application. Kim et al. look at solving this problem by imposing the view
that a long-lived engineering transaction is really a sequence of conventional short-lived
transactions. A second problem with relational databases, as applied to engineering, is
the lack of accurate data models. Guting [Guti89] looks at this problem in a paper
where he describes the development of Gral, a relational database system that is
extensible by user-defined data types and operations. Extensions needed for geometric
database systems are addressed. As Date makes clear in his book on database systems
[Date89]), CAD/CAM is still considered a relatively new area of application for

database technology, and research in the area is being vigorously pursued.

Literature Review 9

While work is being done in the area of engineering databases, some research is
focusing on the development of tools with which to effect the integration. One such
example is a paper by Jayaram and Myklebust [JayaS0] describing a method by which
an expert system generates interfaces semi-automatically between application programs
and CAD systems. The system then creates an accurate parametric representation of
the solid geometry and places it in the CAD database. A second example is EASIE
[Rowe88], which provides a methodology and a set of utility routines for a design team
to build, maintain, and apply CAD systems consisting of large numbers of diverse
stand-alone analysis codes. EASIE contains a centralized database in which data
common to applications in the system is stored. This system addresses applications that

run as batch programs on Digital Equipment Corporation (DEC) VAX computers.

2.2 CASE and Its Role in Integration

Carma McClure [Mccl89] defines computer-aided software engineering as the
automation of software development. According to McClure, the basic idea behind
CASE is to provide a set of well-integrated, laborsaving tools which link and automate
all phases of the software life cycle. Traditionally the software life cycle consists of
analysis and specification of requirements, design, implementation and coding, test and
release, and maintenance. The following definitions from McClure are pertinent to this

discussion on CASE:

- CASE tool - a software tool that automates (at least in part) a particular
software life cycle task.

- CASE toolkit - a set of integrated CASE tools that have been designed to work
together and to automate (or partially automate) a phase of the software life
cycle or a particular software job class.

Literature Review 10

- CASE workbench - a set of integrated CASE tools that have been designed to
work together and to automate (or provide automated assistance for) the entire
software life cycle, including analysis, design, coding, and testing.

It is important at this point not to confuse the terms "integration using CASE tools" and
"integration of CASE tools". In this dissertation, the former refers to the process of
employing CASE tools specifically created for aiding system designers in achieving the
integration of dissimilar CAD/CAM software into a cohesive design environment. The
latter refers to the current goal in CASE where the software engineering environment is
integrated by defining a framework, or integrated project support environment (IPSE),
into which CASE tools fit together. A database, or repository, is part of the
framework, and this addition allows all phases of the design cycle to access information
about each other, keeping redundancy to a minimum, Several existing CASE tools are

reviewed in articles by Smith [Smit90] and Oman [Oman90].

Marshall and Van Dyne [Mars86] discuss a design accelerator and integrator called
DesignCenter, developed by Hewlett-Packard. This again is an example of a dedicated
system, although it exists in an environment in which integrated design and CASE
tools are used in conjunction to design hardware and software for micro-processor
development. In research reports to the IBM corporation [Myki90-1,Mykl90-2] and a
dissertation [Penn91], Pennington presents a new approach to the integration of
CAD/CAM application programs. Outlined are the requirements for a CASE
workbench and toolkit to effect the integration of CAD/CAM applications.

Literature Review i1

2.3 Summary

The literature review suggests that an integrated design environment is key to
productivity and competitive vitality. It is clear that although many attempts have been
made to provide integrated systems, the tools for producing an integration system for

CAD/CAM applications are lacking.

Literature Review 12

3.0 THE CAD/CAM CASE WORKBENCH

The work presented in this dissertation is, in part, based on research conducted by
Pennington [Penn91]. It is the purpose of this chapter to lay the groundwork for the
discussions which follow, by outlining requirements which apply to the CAD/CAM
CASE Workbench defined by the document cited above. Many of the criteria initially
specified for the workbench are used as assumptions and boundary conditions in this

research. The most significant will now be discussed.

3.1_CAD/CAM CASE Workbench Background

Pennington describes a CAD/CAM CASE Workbench consisting of a combination of
commercial and custom tools. A product known as Teamwork from CADRE
Technologies is specified as the backbone of the CAD/CAM CASE Workbench. The
Teamwork product includes a structured analysis tool, a structured design tool, and a
C-source code builder. In addition to the Teamwork tools, a CASE Integration
Toolkit, a High-level Autonomous Integration Model (HAIM), Interleaf Technical
Publishing Software, and an integration framework supplied by the IBM Corporation
were specified for the workbench. For the research conducted in this dissertation, the
HAIM was used as a starting point for multi-platform integration ideas. The resulting
integration system generation method is not represented in the CASE workbench as a
separate entity. Instead, the definition of the CASE Integration Toolkit, developed at
Virginia Tech, has been expanded to include all tools and conceptual models necessary
for the creation of an integration system. Furthermore, the IBM Workstation

Integration Framework has been replaced by CADRE Technologies' integrated project

The CAD/CAM CASE Workbench 13

support environment (IPSE) following the suggestion of IBM-Manassas. An updated
diagram of the workbench components appears in Figure 2.

3.2 Purpose of the CAD/CAM CASE Workbench

The goal of the workbench is to leverage the task of an integration system designer by
providing him with integration tools in a CASE environment. Aside from the tools
normally found in a CASE workbench, a CASE CAD/CAM Integration Toolkit is
included. This toolkit contains several implements geared uniquely toward the creation
and establishment of an integrated system from dissimilar CAD and CAM applications.
One element of the toolkit is an analyzer, initially conceived and designed by
Pennington. The analyzer is currently under modification to enable it to characterize
not only those applications whose source code is available, but also applications whose
source code is not, For those without source code, characteristics of input and output
data must be known. In this case, the analyzer will accept input from the integration
system designer as to the kinds of data to expect in an output or input file.
Specifications of this type will enable the analyzer to categorize the data found in a file
targeted for analysis. Because of this, it is conceivable for applications whose code has
been modified to coexist in the integrated system with applications that can only be
accessed through file I/Q0. More specifics on how this will be achieved will be given in
the section on the distributed integration solution and in the section describing the
CASE Integration Toolkit in terms which relate directly to the distributed integration

solution.

Once information about the application has been extracted, the data which describe the

analyzed application are placed in the CAD/CAM CASE Workbench database. The

The CAD/CAM CASE Workbench 14

T 1

—3 CAD/CAM [ntegration
F Toolkit

Integration Object
Analyzer

Distributed Integration
Solution

Integration Interface

CADRE
TEAMWORK/SA /IM
Analysis Tool

Integration Interface

CADRE

TEAMWORK/SD
Design Tool

CADRE
C Source Builder
Programmer Toolkit

Interleaf Technical
Publishing
Software

CADRE
Integration Project
Support Environment

PSE)

CAD/CAM CASE WORKBENCH

Figure 2; CAD/CAM CASE Workbench,

The CAD/CAM CASE Workbench

15

types of data extracted are documented by Pennington [Penn91], Research is underway
on the structuring and use of these data. At this point, the structured analysis and
design tools of the CASE workbench can be used independently or in conjunction with
other tools in the Integration Toolkit to design a final integrated system. In addition to
the Integration Object Analyzer, there are several other tools which together form the
Network Environment Integration System Enabler. The system enabler consists of data
flow diagrams, structure charts, and related source code, which will assist an
integration system designer in creating a complete distributed integration system. In
order to evaluate the tools in this toolkit, it is important to define the meaning of

integration as employed in the workbench.

I 1 Integrati
There are a number of techniques used to integrate applications into a cohesive
environment. These techniques can be generalized to fit into one of four categories

[Rowe88], [Penn91]:

1) Rigidly connected interfacing
2) Rigidly connected coupling
3) Freely connected interfacing
4) Freely connected coupling

The term interfacing implies indirect data communication among programs which rely
on an intermediate link to properly format the data. Coupling, in contrast, often

implies the use of a database as a means of sharing and exchanging data.

Rigidly connected applications are those which are coupled or interfaced in such a

manner that updates or additions to one or more of the applications mandate a

The CAD/CAM CASE Workbench 16

reworking of the other applications in the connected system. As an example of rigidly
connected interfacing, consider a pair of applications where one application has been
modified or designed to produce an output file in the form of the input file expected by
the second application. Applications which employ rigidly connected coupling may
appear to the user a single application, where desirable aspects of the applications have
been extracted from their original location and restructured to work in unison. This
method would require a common data structure to be used among the different

components, in addition to being difficult to achieve.

Freely connected applications are those which are interfaced or coupled in a way which
is independent of the process by which they were developed. In other words,
applications can be independently added to or deleted from a system without affecting
the structure of other applications in the system. An example of a freely connected
interface is a neutral file format such as IGES or PDES. Freely connected coupling, on
the other hand, allows applications to share data via a common database. For
communication to occur, some sort of database management system is necessitated.
This means that the applications themselves need to be modified in order to send and

retrieve information from the database and its manager.

As was ascertained in the literature review, Pennington's industrial survey [Penn91)
indicated that there is no consensus of the exact meaning of the term “integration”.
Because of this ambiguity, criteria for the CAD/CAM CASE Workbench were
established to include the potential of generating an integrated system using any of the
aforementioned integration schemes. The selection of the appropriate scheme is to be
left to the integration system designer, based on the structure of the applications to be
integrated and the desired end result. In an effort to facilitate the task of an integration

The CAD/CAM CASE Workbench 17

system designer, this research presents a distributed integration solution, employed by
the CASE Integration Toolkit, which enable an integration system designer to develop
systems which utilize rigidly connected interfacing, freely connected interfacing, or
freely connected coupling. Although rigidly connected coupling is not specifically
addressed by the distributed integration solution, the use of the analyzer in conjunction
with the structured analysis and structured design tools of Teamwork will facilitate the
creation of an integration based on this philosophy. Any of the other three integration
methods can also be employed by using the Integration Object Analyzer and the CASE
tools. The end product, the complete integrated system, will reside in one operating
system immediately after creation. Various components can then be ported to other

platforms, if desired.

The CAD/CAM CASE Workbench 18

ED INT

The term “distributed integration solution" implies an integration solution conceived for
use in a distributed environment. A key goal of the distributed integration solution is

to create a mechanism for integration which will be valid in a network environment, as
well as one which will lend itself to development into a set of CASE tools based on the

same distributed integration solution.

The requirements of the distributed integration solution are:

- possible database access and storage of pertinent CAD data

- inter-application communication

- applications running in a distributed and simultaneous environment

- functional access of other applications in the integrated environment without
terminating the session on the current application

- transfer of data among applications via database and interclient communications

- a system executive which oversees and manages interclient and database
interactions

It is necessary to clarify a few terms used in the requirements stated above. The system
executive which will oversee interclient and database communications will be called the
integration server. It will be described in detail as the discussion progresses.
Furthermore, interclient refers to the data exchange among the applications in an

integrated system,

Using the requirements above as a starting point, several approaches to the problem of
interprocess communication were considered as a basis for the distributed integration
solution. One way of enabling two applications to communicate over a network is by

using the X Protocol. The X Protocol runs above any lower-level network protocol

The Distributed Integration Solution 19

that provides bidirectional communication and can deliver unduplicated, sequential
bytes of data [Nye90]. X provides a predefined set of queries and responses between
two processes. Interprocess communication in X is effected using a mechanism called
a selection. Selections allow communication between two clients on the same X server.
The X server acts as an intermediary between user programs and the resources of the
local system such as: the screen, keyboard, and mouse. It contains all device-specific
code and insulates the applications from differences between display hardware. The
applications in this scenario are clients of the X server. For the purposes of the
distributed integration solution, the function of the server needed to be different than
that of the X server. Instead of managing workstation resources, a server in the
distributed integration solution needed to manage the exchange of data between
applications. It may be possible to write an extension to the X server so that it is
capable of managing interprocess communications, however, a disadvantage of this
would be a reduction in efficiency if the server has to handle the management of the

windowing system as well.

Another option would be to use the Remote Procedure Call (RPC) protocol which
provides the same high-level communications which are used by the operating system.
The RPC protocol utilizes the eXternal Data Representation (XDR) protocol which
standardizes the representation of data passed in remote communications. In effect,
XDR will compensate for differences in machine byte ordering. RPC relies on a
transport protocol such as Transmission Control Protocol/Internet Protocol (TCP/IP) or
User Datagram Protocol (UDP/IP) to carry messages between communicating
processes. A programmer can divide an application into a client side and a server side
and use RPC as the mechanism for communication between the two. The application
on the client side designates some procedures as remote, while the application on the

The Distributed Integration Solution 20

server side implements those procedures and declares them as part of the server
[Come91]. When the client program executes one of the remote procedures, RPC
collects values for the arguments and sends them in the form of a message to the
server. RPC then awaits a response and returns values to the client. In this way,
communication between client and server is carried out through procedure calls. A
major disadvantage of the high-level RPC routines is that they are based on UDP/IP
which restricts the RPC calls to 8k bytes of data. This is restrictive when considering

the nature of data transactions for CAD/CAM applications.

Another possible mechanism for interprocess communications is the Network
Computing System (NCS). NCS enables the distribution of application processes
across resources in a network by maintaining databases that control information about
the resources [IBM90]. NCS is object-oriented in that the programs are cast in terms
of the objects they manipulate instead of the machines with which they communicate.
An RPC runtime library handles communications for NCS. In this environment, RPC
uses sockets for interprocess communications. NCS uses UDP/IP datagrams to send
messages between clients and servers. Datagrams are unreliable. TCP, on the other
hand, defines a reliable stream delivery that is useful for sending large volumes of data
from one computer to another. Using an unreliable system for volume transfers
requires programmers to build error detection and data recovery into their application

programs.

Sockets were chosen as the means for communication between the integration clients
and server due to their low-level flexibility and reliability when stream connections are
used above the Transmission Control Protocol/Intemmet Protocol (TCP/IP). The socket
abstraction is a product of Berkeley Software Distribution (BSD) and is essentially a

The Distributed Integration Solution 21

low-level applications programming interface (API) for interprocess and network 1/0
communications. It allows local or remote applications programs to set up a virtual
two-way communication path and exchange data. The socket interprocess
communication facilities reside on top of the network facilities; thus the
communications are based on a reliable stream connection provided by TCP/IP,
Sockets are basically file descriptors to which apply read, write, send, and receive
subroutines. Just as programs open files when free access is required, application
programs using BSD request the operating system to create a socket when one is
needed. The system returns an integer value which the program will use to access the
socket. Sockets can be created to work in one of two domains, UNIX or Internet. A
socket which communicates in the UNIX domain can only interface with sockets on its
host machine, while an Internet socket can communicate with sockets on its host as
well as on foreign hosts. Internet is the term used to describe the technology which
interconnects physical networks and makes them function as a unit. This technology
hides the details of network hardware and permits machines to communicate
independently of their physical network connections. Although the choice of sockets as
a mechanism for communication is operating-system dependent, recent incorporation of
sockets in systems other than UNIX, such as IBM's VM and MVS, allow the latitude

necessary for this type of solution.

Other requirements used in the design of the distributed integration solution, including

the ones mentioned above, are delineated as follows:

1) The distributed integration solution should be valid in a network environment.
2) Compatibility with the X-Window System is desired.

3) The emphasis is on interactive CAD/CAM applications.

4) There is a possibility of database support of the integrated system.

The Distributed Integration Solution 22

5) Source code for applications should not be a requirement.

6) The distributed integration solution is valid for 3 types of integration : rigidly-
connected interfacing, freely-connected interfacing, and freely-connected
coupling.

The distributed integration solution created as a result of this research is based on the
definition of an “integration client/server” model. Given the constraint that the model
for integration must be valid in a network environment, a client/server relationship
seems well suited to the task. In this arrangement, the integration clients are actually
the CAD/CAM applications programs with a socket-based interface to the server
(AP/SOCK Interface) and a graphical interface to the user (GRIM widget) appended to
it. It is important to note at this time that in the discussion which follows "application”
refers to the CAD/CAM applications program while “client" refers to the application in
the context of the integrated system. In other words, the term client implies the
CAD/CAM application, the AP/SOCK Interface, and the GRIM widget as a unit. The
integration clients and server communicate using sockets as a mechanism for data
exchange. This configuration is shown in Figure 3. Note that clients on different

workstations can communicate with the server which resides on a separate machine.

The integration server is the administrator of the integrated system, meaning that it is
the server's job to determine which applications are currently connected to the system
and to enable users to interact with those applications by specifying data exchanges.
The server is also an intermediary through which all data, including requests, bound for
applications in the integrated system must pass. The mechanism in the server which
acts to convey model data is the transfer function. Each application in the system has a
corresponding transfer function at the server which accepts model data from it and

translates, transforms, or relays that data to another application in the system.

The Distributed Integration Solution 23

WORKSTATION A WORKSTATION C

AD :
AFPPLICATION H APPLICATION
A B

LISTENING

INTEGRATION
SOCKET SERVER

i

WORKSTATION B

TRANSFER
FUNCTIONS

ERROR
HANDLING

DBMS

DATABASE

MAINFRAME

Figure 3: Integration client/server relationship.

The Distributed Integration Solution

24

The requirement for compatibility with a windowing environment goes hand-in-hand
with the emphasis on interactive applications. The distributed integration solution is
designed to handle applications in a network environment, but the possibility exists that
two applications could reside on the same workstation. If the applications are of an
interactive nature, two applications co-existing on one workstation necessitate a
windowing environment. The X-Window System was prescribed since it is the most
reliable and well-known of such systems to date. Interactive applications are not the
only type which can be handled by this distributed integration solution. In fact,
programs which run in batch mode are a simpler case than their interactive
counterparts, since they automatically guide input data through the program and
produce a defined output. In addition, a Motif widget interface was selected as the
means by which individual integration clients interact with the user. Motif is a
graphical user interface based on the X-Window System. The Motif toolkit sits above
the XtIntrinsics toolkit which is part of X-Windows. Figure 4 shows how each of these
elements is related to the others. A Motif widget is an object which provides a user-
interface abstraction, in other words it combines scrollbar widgets, list widgets, button
widgets, etc. to create a custom user interface. Motif was chosen for interface
development because it has a consistent look and feel and because it is a toolkit which
accompanies the X-Windows software, which has been chosen as a requirement for the
integrated system. Since Motif is included in the X-Windows software, there is no

need to mandate extra software whose sole purpose would be to provide an interface.

As can be seen in Figure 3, the proposed integration system will consist of integration
clients and servers in a networked workstation environment, with the possibility of a
common database used to store and transfer data. Note that this is not the same

The Distributed Integration Solution 25

MOTIF

XT INTRINSICS

TOOLKIT
LEVEL

X LIBRARY

NETWORK

INTER-PROCESS
COMMUNICATIONS LIBRARY

LEVEL

Figure 4: Motif toolkit above XtIntrinsics above X.

The Distributed Integration Solution

26

database that was discussed in the context of the CAD/CAM CASE Workbench. The
database is an optional member of the integrated system, since the integration server
can function as an intermediate link in the process of data exchange between client
applications. The most likely location for the database is a mainframe environment,
though a workstation platform would also be suitable. The mainframe specification
was made because of the need in industry for a reliable, secure means for storing
proprietary data. This is a reasonable assumption considering IBM's recent
announcement of software that will transform its mainframe computers into massive
database servers. The software is currently geared toward PC access, but this
announcement shows the trend toward the use of mainframe computers as information
warchouses [Pall91]. In the distributed integration solution, the database will most
likely be used for data storage and retrieval. The database will communicate with the
integration server in a manner similar to that of the integration clients, employing a
database manager for data access. Both IBM VM and MVS mainframe environments
support the socket abstraction, although asynchronous functionality is difficult to
implement. In any case, it is not necessary for the database to utilize an asynchronous
socket, since blocking sockets would not have an adverse effect on the performance of

the database or on the other components of the integrated system.

Within the integrated system, applications with and without source code can coexist. In
the case where application source code is available, the integration system designer can
utilize the analyzer present in the Integration Toolkit to extract specifics about input
and output capabilities of the application as well as data structure. The source can be
modified, or more simply, modules that the application would normally use to extract
data for display can be called by the client modules which interface with the integration
server, This allows the integration system designer to exploit any internal databases or

The Distributed Integration Solution 27

data structures that the application may utilize. In general, source code should not need
major modification. If source is not available, the application must be able to produce
output files and read input files. If a proprietary interface is available, a layer between
the client interface with the server and the application can be built to facilitate data
exchange into and from a common storage area between the two interfaces. This

concept is illustrated in Figure 5.

The distributed integration solution must be capable of supporting three types of
integration. One way in which the distributed integration solution can be implemented
is by creating a freely connected interface. In this type of system, the integration
clients send data in their own format to an integration server. At the server, the
receiving client is determined and the data is translated or transformed into a format
compatible with its data structures. The data is then sent to the receiving client where
they are displayed, analyzed, or stored. If a database is added to the scheme, as was
proposed earlier in this section, a freely connected coupled relationship develops
between the applications which access the database via instructions to the server. As an
example of rigidly connected interfacing, consider an application which can only
receive data in the form of a strictly defined input file. In a normal system, any other
application wishing to communicate with the input-restricted application would have to
modify its output to be structured like the input file. In the system based on the
distributed integration solution, the applications send their data, as they produce it, to
the server where it is reformatted to produce an input file of the type expected. An in-
depth description of the integration client, the integration server, and the

communication protocol used in the distributed integration solution follows.

The Distributed Integration Solution 28

GRIM
WIDGET

AP/SOCK CAD
INTERFACE APPLICATION

INTEGRATION
SERVER

s
pisp. i,

Figure §;: Client AP/SOCK connected to application by proprietary interface,

The Distributed Integration Solution

4.1 The Jutegration Client

In the following discussion, emphasis is on applications such as CAD, CAE or CAM.
For simplicity they are referred to as CAD applications. The integration client consists
of three elements: a CAD application, an AP/SOCK (Application/Socket) Interface,
and a GRIM (GRaphical Interface Manager) widget. This configuration is shown in
Figure 3. The relationship of these elements to one another and to the integrated

system will now be discussed.

The AP/SOCK Interface acts as a front end to the CAD application in the integrated
system. One of its purposes is to invoke the CAD application after the AP/SOCK has
initialized sockets for communication with the GRIM widget and the integration server.
The combination of the AP/SOCK and CAD application (excluding the GRIM widget)
will, from now on, be referred to as the client application. The AP/SOCK and the
CAD application communicate via a common buffer. ‘ During development of an
integration client, the integration system designer defines a common buffer area
through which the CAD application and the AP/SOCK Interface interact. The analyzer
contained in the CASE Integration Toolkit aids the integration system designer in
locating code related to important data for inclusion in common buffer storage. More
discussion on how this is achieved will soon follow. Though the current trend is to
develop CAD applications using the C programming language, there exist a large
number of applications still on the market which were written in either FORTRAN or
Pascal. Since the AP/SOCK Interface is C based, the problem of compatible data
buffer areas for programs written in Pascal and FORTRAN must be addressed. Pascal
allows pointers to memory locations. Therefore, a link between the interface and a

Pascal-based application need only exchange a pointer location representing a common

The Distributed Integration Solution 30

data buffer. FORTRAN, on the other hand, presents more of a challenge, since it
hides memory manipulations from the user. In this case, several arrays containing
integer and real variables will be sent as arguments to the application program from the
interface. This is a feasible solution since FORTRAN treats arguments passed into a
subroutine as pointers. The mixing of languages presents few problems in a UNIX

environment,

The AP/SOCK and the GRIM widget are connected by a socket link which enables the
two processes to run in parallel and communicate only when user action at the widget is
detected. Because they run separately, the CAD application is able to execute
independently. Similarly, the GRIM widget, which is event driven in nature, can use
its own management system to poll for incoming events. Motif widgets are essentially
event driven, meaning they await events generated by users, then act on these events.
There is a way for a widget to break out of the event loop, but this procedure is
effective only if the process executed after the break takes less than a few seconds to
complete. This being true, there is no effective way of combining the GRIM widget
with the CAD application without a major overhaul of the application's source code. It
is much more desirable to separate the two components and have them run in parallel,

communicating only when user interaction is detected by the widget.

It is important to note at this point that all data, (which can be in the form of a message
or actual information) which originate from any of the three components of the
integration client and which are bound for the server, are sent to the integration server
on the socket controlled by the AP/SOCK interface. This concept is illustrated by
Figure 6. This figure shows choice data generating a request at the GRIM which is
transmitted to the AP/SOCK Interface. Either this request or data compiled in response

The Distributed Integration Solution 3

USER CHOICE
DATA

GRIM
WIDGET

AP/SOCK
INTERFACE

ATA

APPLICATION

Figure 6: Client data routed through AP/SOCK Interface.

The Distributed Integration Solution

32

to a different request can be sent to the integration server. The main purpose of the
AP/SOCK Interface is to act as an intermediary between the application program and

the integration server, and the GRIM widget and the integration server.

4.1.1 AP/SOCK Interface

The first task of the AP/SOCK interface is to create an asynchronous Internet socket
for communication with the integration server. Internet sockets are able to
communicate with sockets based on a foreign host that are connected by an Internet
network. Next, the interface creates an asynchronous UNIX socket for communication
with the GRIM widget. UNIX sockets are valid for communication on the same
workstation. This means that the client application and the GRIM widget, though in
separate windows, appear on the same workstation. If the CAD application is run in
batch mode with no graphics, the only interface displayed to the user will be the client
application's corresponding GRIM widget. When both sockets exist, the AP/SOCK
sends connection requests to the integration server and GRIM. The client socket

interface will wait to proceed until both connections have been accepted.

With connections established, the interface invokes the CAD application and passes it
any variables that have been declared as common. It may not be necessary to send
arguments if the application is C based. In this case, a "global extern" statement will
work. But, as previously discussed, Pascal- and FORTRAN-based programs will
require an argument list. By declaring variables from the CAD application in the
AP/SOCK, the common data buffer is established. It is necessary to access the
application source code and delete initializations of these variables since the CAD
application is no longer the controlling program. After invoking the CAD application,
the interface sends a request to the server for a list of clients currently active in the

The Distributed Integration Solution 33

integrated system, from which its client application can request data. This list, when

received, is relayed to the GRIM for display as user choices.

Because asynchronous sockets were created, an event handler must be established to
check for incoming signals, without interrupting execution of the CAD application.
The nature of asynchronous sockets is to aliow the CAD application to be manipulated
by the user until a signal is detected on one of the sockets. Once a signal occurs, the
application is suspended and the signal is evaluated to determine on which socket it

occurred and what it contains.

1.2 The CAD Applicari
The CAD applications discussed in this section are interactive in nature. One must
bear in mind that batch programs are a simplified case since they require defined inputs
and outputs. There are two cases to consider: application source code is available and
application source code is not available. The former is the case considered in this
research for the creation of a prototypical system, since it tends to be the more complex

of the two.

In the case where application source code is available, the integration system designer
analyzes the contents of the application in the early stages of integration system design.
Based on the information extracted with the analyzer, the designer can define data
structures for transfer to other application clients within the integrated system. This
information is also used to establish a common data buffer which links the client socket
interface (AP/SQCK) with the CAD application, It is through this common data buffer
that the two components (interface and application) communicate. For example, when
there is incoming data which must be taken from the socket by the AP/SOCK Interface

The Distributed Integration Solution 34

and stored in an area to which the application program has access, it is the common
data buffer which receives this information. Recall that one of the assumptions made in
this research is that the CAD applications are of an interactive nature. This means that
in order to transfer the data sent by another application to the desired module within the
receiving CAD application, user interaction is a necessity. For instance, wing data
may be requested by a CAD aircraft design application that performs finite element
analysis. When the data are received by this application, they could be in a module
which only displays the geometry and does not analyze it. To proceed to the correct
module, the user must interactively select menus until the desired analysis section is
reached. It is not logical to automate the process of data placement within an
interactive application, because that would be contrary to the nature of the application.
Application programs which run in batch mode can also be treated under the distributed
integration solution, since they need data passed directly into a receiving module, and

so no further manual interaction is necessary,

If source code for the application is not available, there must be a way to characterize
the output and input files so the Integration Object Analyzer, contained in the CASE
Integration Toolkit, can be tailored to filter important information regarding the output
file for use in the integrated system. This means that the analyzer must be capable of
accepting information from an integration system designer about the format of the
output file in question. The analyzer can then characterize the contents of the file and
allow for its incorporation into the integrated system. For instance, the integration
system designer can input data to the analyzer which, in turn, describes the kinds of
data which will occur in a targeted input or output file. He basically specifies data
types and format constraints for the file and then uses the analyzer to determine exactly
what each input or output file of that type contains. Furthermore, applications which

The Distributed Integration Solution 35

lack source code must be able to accept input in the form of an input file, or must
employ a proprietary interface as a means or receiving data from an exterior source. In
either case, the format of the input file, or the mechanism used by the proprietary
interface to receive data must be known in order for the appropriate transfer function to
handle data in the integration server. An application without source code is
incorporated into the integrated system by encompassing the application with the
AP/SQOCK Interface as usual; however, the event handler must be structured in a
slightly different manner. The event handler will be responsible for extracting data
from and passing data to these applications using output and input files. For example,
when data is received by the interface which is destined for the application, the
interface constructs an input file and then, if necessary, invokes the application so that
the file can be read. If the application does not need to be restarted in order to read the
input file, a message will appear in the application's GRIM widget instructing the user
to manually take steps to read in an input file of the given name. When an application
in the integrated system requests information from the sourceless application, the client
application's widget once again instructs the user to manually create a named output
file containing the current model displayed and gives it a specific filename. When the
file has been created, the user informs the widget by selecting a proceed button which
alerts the handler to send the file to the server for transfer to the requesting application.
The steps previously outlined will, of course, depend on the integration system

designer's implementation and the structure of the CAD application.

4.1.3 The GRIM Widget

The GRIM is a Motif widget-based user interface. Given that Motif interfaces are
essentially event driven, widgets await events generated by users, then act on them. In
an event driven application, the user is in charge since the application is always waiting

The Distributed Integration Solution 36

to react to a user command. A function called XtMainLoop checks for user input and
work procedures. Work procedures are instructions for the main event loop to branch
from event checking and perform a specified function when no user input is detected.
This basically means that work procedures can only be executed if user input is not
coming in with great frequency, otherwise the event queue gets priority., Another
concept that is key to the understanding of widgets is the callback function. Callback
functions are associated with widgets (for example, a pushbutton widget) when it is
created. This enables an action to be ascribed to the widget (for example, quit program
when pushbutton activated). If a widget is meant to do something, it has a callback

which is invoked when the widget is activated.

The GRIM widget runs in parallel with the client application (AP/SOCK interface and
CAD application). It is connected to the AP/SOCK of its owning client application by
a socket, so that communication can occur when user interaction at the widget is
detected. The term "owning application" implies the application for which the GRIM
provides an interface. The socket connection between the two interfaces allows the
application to proceed without having to manage an external interface for data exchange
in the integrated system. This configuration makes it possible to display a user
interface for the client even when application source code is not available for
modification. The key concept is that there is independence of the user interface with
the integrated system and the CAD application. Because they run in parallel, the CAD
application and the GRIM widget will be contained in separate windows on the
workstation. Remember that they will both be on the same machine since the GRIM
and the client application are connected by UNIX sockets. The GRIM widgets window
is not in any way attached to the client application's window, and therefore it is
necessary to indicate that the GRIM widget belongs to a specific client application.

The Distributed Integration Solution 37

This is done by having the widget display the name of its owning application above the

selection list which contains client names for data requests.

The GRIM widget is basically a generic entity in the integration system. This means
that all GRIM widgets have identical code structure and content, with the exception of
the pathname used to define its UNIX socket file. This pathname must be unique for
every GRIM in the integrated system and must be known by the owning client

application so that communication can take place.

The GRIM widget is similar to the integration server in that it uses a listening socket to
detect connection requests. However, unlike the integration server, the GRIM only
expects one client, its owning client application, to attempt to connect to it. When the
client application does request connection, the GRIM accepts and requests the owning
application's name for display in the widget. Using Figure 7 as a guide, we will now
explain what makes up a basic GRIM widget. The idea behind the creation of this
widget is, first, to establish a main window widget which will house other widget
types. To the main window we add a menu bar widget which allows us to place menu
choices in a menu bar format. The item of this type present in the figure is labelled
ACTION. When selected, ACTION allows the user to reset the widget toggles or to

exit and destroy the widget.

Once the menu bar has been completely defined, a selection box is added to the main
window widget. The selection box includes two sub-widgets: the selection list widget,
and the selection dialog widget. The selection list will contain the names of the clients

connected to the integrated system from which the widget's owner (owning client

The Distributed Integration Solution 38

Menu bar widget

Main window) .
widget Exchange Selection For My Client Name Name of owning

client application

Application A
Application E

<~ Selection list

Names of
applications
from whom data
can be requested

Selection box
widget

0 REQUEST BUFFER DATA FROM CLIE
1) CLIENT ATTRIBUTE LISTING
@ ACTIVATE EXCHANGE

Framed form
widget with three
radio toggles

Current Exchange Selection

.

Motif window
Selection border
dialog widget

Figure 7: Basic GRIM widget.

The Distributed Integration Solution

39

application) can request data. Until a client has connected to the GRIM, this list
remains empty. This is because the GRIM has no way to access the integration server
to request the list until the client's AP/SOCK intervenes. The selection dialog is shown
at the bottom of the widget.

A form widget is then added to the selection box widget. The form widget is enclosed
by a frame and three radio toggle buttons are created for it. These toggles are defined

as:

1) Request Buffer Data From Client
2) Client Attribute List
3) Activate Exchange

Each toggle has a callback associated with it. The activate exchange toggle, as seen in
Figure 7, is initially greyed out until enough information (request for buffer and
responding application's namé) has been gathered to effect an exchange. When it is
selected, it will display an information panel with the name of the application who will
respond to the request. At this time, the user has the option of proceeding with the

request or canceling it.

Although there are three toggle buttons, they represent two possible actions:

1) need current buffer data from a client in the integrated system
2) need some component of data from a client in the integrated system (an example
would be to request only the wings from an aircraft model)

To request buffer data is to request that the model or data currently displayed by a

client application in the integrated system be transferred to the requesting client. If

The Distributed Integration Solution 40

only a component of that data is desired, a client must first request that the client

application with the desired data supply a client attribute list.

For applications in the integrated system that are able to supply data to other
applications, a client attribute list is needed. The client attribute list (CAL), or simply
attribute list, is a list which delineates the kinds of data which can be extracted from the
application. The attributes are a component-like list describing the kinds of data which
are representative of the current model. For instance, if the current model in an
application represents an aircraft, the attribute list could supply separate components as
options. The list is employed to give the user the option of extracting specific data

from a model, instead of requesting the entire set.

During creation of the GRIM widget, each button, list, etc., is associated with a
callback function. This means that if an event is detected at that widget element, a
callback function corresponding to the action is invoked. The callback defines the
action to be performed based on the event.

After the GRIM widget has been created and realized, the XtMainLoop takes control
and checks the work procedure when no events are queued. The work procedure used
by the GRIM allows the socket functions to be checked and processed. The function
used to check for socket activity is a BSD socket subroutine called selecz. Keep in
mind that sockets are basically file descriptors which correspond to a process instead of
a file. The select subroutine checks the specified socket descriptors to see if they are
ready for receiving, sending, or if an exceptional condition is pending. The select
procedure allows a server (in this case the GRIM widget interface) to interrupt an
activity (polling for events), check for incoming data, and then continue processing the

The Distributed Integration Solution 41

activity. In this respect the GRIM acts as a server where its only client is the owning
client application. Another difference between the GRIM "server" and the integration
server is that the GRIM functions in the UNIX domain instead of the Internet domain
as the integration server does. This means that socket connection is described by a
pathname instead of a port number. It does, however, use a listening socket which

assigns a new socket descriptor to the client application which requested connection,

It has been established that the GRIM and the client application (AP/SOCK interface
and the CAD application) must work together, but run independently of one another.
In order to reduce the complexity of starting several processes, a script is used to start
the client. The script starts the GRIM widget as a background process, sleeps (waits)
for three seconds, then starts the client application. Background processes do not need
a shell in which to run. By running the GRIM as in the background, only one shell is
needed for the client instead of two (one for the client application and one for the
GRIM). The sleep is necessary because the GRIM widget needs sufficient time to
initialize and set up its listening socket before the client application attempts

connection. The following is an example of a script file created for this purpose:
widget_myclient &

sleep 3
my_client

where widget myclient is the executable for the widget, & makes it a background
process, sleep tells the system to wait three seconds before invoking my_client which

is the executable for the client application.

The Distributed Integration Solution 42

422_The Integration Server

The integration server is the core of the integrated system; however, a user of the
integrated system could very well be ignorant of the fact that the integration server
exists. This is because the integration server is a background process which is
continuously running on the host workstation, allowing integration clients to connect
and disconnect. The server has a dedicated port number which corresponds to its
listening socket. This port number cannot be duplicated by any other process running
on the workstation. Only clients that recognize this number and the internet address of
the host machine can connect to the integration server. By concatenating the unique
internet address with the socket address (port number) an internet socket address is
produced, which enables clients to locate and utilize the server. As a guideline, port
numbers up to 255 are reserved for official Internet services. Port numbers 256-1023
are reserved for other common services. Some operating systems have additional
constraints on port numbers. For example, IBM workstations with the graPHIGS API
installed have socket ports reserved for the interprocess communications between the
graPHIGS shell and nucleus. The prototype that was developed in this research to test
the validity of the distributed integration solution uses an integration server with a port

number of 2000.

If the process for which a connection request was directed is listening at the well-
known port, it services the request and either uses that same port for the duration of the
connection (as does ftp - file transfer protocol), or creates a new port which is assigned
to the client process. By freeing the listening port in this way, the server process can
continue to accept connections from other client processes. Requests for connection are
handled so that multiple clients may access the integration server. As clients are

accepted for connection, the server adds the client's socket identifier to a data structure
The Distributed Integration Solution 43

which allows descriptors to be cross-referenced with client name. Later this is how the
integration server will determine where to send data when only given the receiving

application's name,

The listening socket is a key element of the integration server. When first invoked, the
integration server sets up a socket which listens for incoming connections from
integration clients. These connection requests are directed through the AP/SOCK
Interface of an integration client during a client's initialization stage. When a
connection request is detected, the listening socket accepts the connection, thereby
creating a new and dedicated socket on which communication between the integration
client and the server takes place. The listening socket then returns to its task of waiting
for more incoming connections. This process is interrupted when a signal is detected

on one of the sockets dedicated to an integration client.

Once a connection has been established between sockets at the client and server
processes, the sending and receiving of data can occur. There are several ways in
which to accomplish this; the method chosen in the prototype is to use send and receive

subroutines supplied in the BSD libraries.

The integration server uses the select subroutine to check for activity on the sockets
managed by the server. When a signal arrives, the socket on which it occurred is
determined. If it occurred on the listening socket, this indicates a client request for
connection, and a new socket dedicated to that client is created. If the signal came in
on one of the other existing sockets (connected to integration clients), a block of data
called a header is read from the socket and evaluated. The header will be described in
more detail in the succeeding section on communications. In brief, the header contains

The Distributed Integration Solution 44

a major and minor opcode (operation code) which combined give the integration server

enough information to locate the module which will evaluate the signal.

The integration server contains a library of transfer functions which are used to
transform or translate data from one application to the format of another. These
transfer functions are unique in that they must be specifically designed to handle the
order and type of data sent by one application and expected by another. Therefore, it is
conceivable that for every n applications in the integrated system there will be n
transfer functions designed to accept data from each application and n-7 sub-categories
to each transfer function. By sub-categories it is meant that based on the receiving
application, there is a switch statement in the transfer function which determines a
module which will reformat the data sent by the transmitting application. This process
is illustrated by Figure 8. It is feasible that a transfer function will have more than n-1
sub-categories. For instance, it may be necessary to take data from an application and
transform it into another coordinate system before returning it to the originating
application. This in essence would allow one to add external functions to an
application program, and store those functions at the server. Also, several formats may
be necessary for a single application in the system. All these variables are left to the
integration system designer to determine. These functions must be written, or
designed, in the CAD/CAM CASE Workbench for each set of applications in the
integrated system that wish to exchange data. Information obtained by the analyzer
about the applications is contained in the database of the workbench and can be utilized

to facilitate creation of the transfer functions.

The transfer functions make up a library which resides in the integration server. These
functions are used to translate or transform the data which is being transferred within

The Distributed Integration Solution 45

data from
client A

Transfer Function - A

Client‘A data - X-form for B
for Client B

or
Client A data X-form for C
for Client C

or
Client.A data < X-form for (n)
for Client (n)

Figure B: Sample transfer function.

The Distributed Integration Solution

the integration system from one application to another. This is a very important step
considering the differences in data structure, ordering, and representation across CAD
applications However, in the event that no transformation or translation of the data
format is necessary (data structures in two applications are identical), the integration
server will simply apply a new opcode to the message containing the data, and relay it

to the second application.

The integration server's design allows it to remain as autonomous as possible,
establishing and terminating connections with integration clients in the system. This
autonomy allows clients to connect and disconnect without affecting the remaining
client applications in the integrated environment. Another benefit which stems from
this design is that the server can reside anywhere in the network, and is not obligated to
be on a specific machine. The only stipulation is that the clients know where the server
is located and use this information when they attempt to connect to the server using the

socket they have created for this purpose.

4 icati

For effective communication between the integration client and server, messages sent
must be in a form which is predictable and meaningful. A protocol was developed to
facilitate the building and resolving of messages being passed in the integrated system.
Every message passed contains a data structure called a header which precedes all other
data. The header which contains the size of the succeeding message and major and
minor operation codes (opcodes) to allow for proper evaluation of successive messages

by the client or server.

The Distributed Integration Solution 47

The header data structure is defined as containing the following information:

1) size_in_bytes: most often used to tell the receiving client how much data to
expect after the header. It can also be used to carry flags.

2) maj_opcode: operation code used to locate the major category of the message.

3) min_opcode: operation code used to locate the subordinate category of the
message.

The major opcode is an integer which denotes a category of message. The integer and

corresponding category follow:

0 Initialization

1 Request

2 Update/Data Transfer
3 Response

4 Error Message

Minor opcodes are used to locate, within the major category, the function or module
which will handle the incoming data. This process is discussed in more depth in the

section on the distributed integration solution prototype.

The Distributed Integration Solution 48

ED ANALYSIS A ED I

As a precursor to the discussion of the creation of CASE tools based on the distributed
integration solution, it is necessary to describe the processes of software development.
The steps which traditionally comprise the software development and life cycle are

shown in Figure 9. These five steps include:

1) Analysis and specification of requirements
2) Design

3) Implementation/Coding

4) Testing

5) Maintenance

In this section we will treat the issues of Requirements Analysis and Design as applied
to the distributed integration solution. The methodologies which correspond to those
used by the CASE tools employed in this research to aid in the completion of the tasks

above are structured analysis and structured design.

nalysis and Requiremen ification
Structured analysis was developed by Edward Yourdon and Tom DeMarco to provide a
method for focusing on an application's data flow, rather than its control flow. The
goal is to produce a graphical structured specification of the application. For the
purposes of the distributed integration solution, a structured specification was created

using the following tools:

1) data flow diagrams: used during analysis to define the problem components and
the data transferred among them. It is a graphical depiction of the different data
items in a system and their movement,

Structured Analysis and Structured Design 49

ANALYSIS AND
SPECIFICATION
OF REQUIREMENTS

DESIGN MAINTENANCE
IMPLEMENTATION/
CODING TESTING

~_

Figure 9: Software development life-cycle.

Structured Analysis and Structured Design

50

2) data dictionary: a catalog of all data items found in the data flow diagrams.

3) process specifications: also called mini-specs they document data
transformations occurring in data flow diagrams. Decision tables, decision

trees, structured English, and pseudocode are all process specification
techniques.

The first step in the creation of the structured specification was the creation of a data
flow diagram for the entire integration system. Data flow diagrams offer a top-down
view of the system to be created from a data perspective. In a data flow diagram, data
elements flow from process node to process node, where they are transformed. There
is no notion of control flow. Because of this, data flow diagrams best depict a system

as viewed by the end user.

Data flow diagrams consist of four graphical components as shown in Figure 10. The
bottom-level process in a data flow diagram has a process specification associated with
it. The process specification describes the transformation of the data input to the
process into output. Another important element of the data flow diagram is the data
dictionary. Also shown in the figure are a few of the notations employed in the data
dictionary which are used to interpret the data flow diagrams. A data dictionary is a
reference of all the data elements found in a data flow diagram. All attributes of a

particular piece of data can be found in the data dictionary.

In summary, the important characteristics of the data flow diagram are:

1) graphical specifications of requirements

2) hierarchical and multi-level in nature

3) emphasis on data flow instead of control flow

4) specification of software requirements, not software design

Structured Analysis and Structured Design 51

D ictionary En

Operator Example
+ a+b
[] [a/b]
ok *comment™
Data Flow Diagram Components
Symbol Name
—_ Data flows
O Process nodes
D Data sources
+ sinks
- Data stores

Figure 10: Components of a data flow diagram.

Structured Analysis and Structured Design

Definition
a together with b
select eitheraor b

comment

Function

Data structures input to and
output from the process

Transform incoming data flows
to outgoing data flows

External originators and receivers
of data flows

Repositories which allow addition
and retrieval of data

52

5.2 Structured Design

Structured analysis and specification is a first step to the achievement of a structured
design. Structured design articulates a software system's internal architecture, while
structured analysis methodologies, such as data flow diagrams, emphasize a system's
external or user's view. It is a process whereby system requirements are transformed
into a plan for implementing the requirement. Figure 11 shows the process of
structured design as defined by Yourdon [Page88]. Notice that structured analysis is a
necessary first step.

The CASE workbench aids in the transition from structured analysis to structured
design by supplying aids to transform analysis requirements into design specifications
for implementation. These design specifications are usually in the form of a structure
chart. The three steps used to create structure charts, as defined by Page-Jones,
[Page88] are:

1) Break the system into similar units using transaction analysis.
2) Convert each unit into a structure chart using transform analysis.
3) Construct an overall system implementation from the separate units.

Transaction analysis identifies the transaction types of a system and uses them as the
units of design. Transaction types are identified on the data flow model of the system

by studying the discrete event types that drive the system.

Transformation analysis is the strategy used to convert each unit of the data flow
diagram, which was isolated in the transaction analysis, into a structure chart. This

method consists of the following five steps:

Structured Analysis and Structured Design 53

PROGRAM LEVEL

2. DRAW
STRUCTURE

CHART HIGH-LEVEL

STRUCTURE CHARTS

3. EVALUATE

DESIGN
COMPLETED
STRUCTURE CHARTS
4. PREPARE
DESIGN FOR
IMPLEMENTATION

LOGICAL AND

PHYSICAL
PROGRAM
DESIGN

Figure 11: The Yourdon structured design process [Page88].

Structured Analysis and Structured Design

54

1) Drawing a DFD (data flow diagram) of a transaction type.

2) Finding the central functions of the DFD.

3) Converting the DFD into a first draft of the structure chart.

4) Refining the DFD.

5) Verifying the structure chart with respect to the original DFD,

The process of transforming data flow diagrams representing transactions into structure
charts is not algorithmic. Instead, transform analysis is a strategy which produces a

rough draft of the system, requiring several iterations to perfect.

When completed, structure charts represent the software system in a hierarchical and
modular fashion. Data transactions between modules, called data couples, are
represented as well. In the figure which defines structured design according to
Yourdon, Steps 1 and 2 refer to requirements analysis and structured design. Step 3 is
designed to evaluate the quality of the design. This evaluation is made based on data
coupling and cohesion. Data coupling is a measure of the complexity of connections
between modules. In this respect, the simpler the connections, the better. Cohesion is
a measure of the strength of functional relationships within a module. Step 4 is an
iterative process whereby modules are divided until the lowest level can be used for

implementation of the design.

Structure charts show only the overall structure of a system, with very little procedural
detail. In order to enable the programmer to make the transition from structure chart to
actual code, some sort of procedural information must be given about each module.

There are two possible methods by which this can be accomplished:

1) module specifications (m-spec): give input and output expected from the module
and the function the module is expected to perform. No particular structural

Structured Analysis and Structured Design 35

information pertaining to the code is necessarily specified, although the
possibility exists for actual source code to be placed in the m-spec, which is
then embedded in the source code of the system when complete.

2) specification by pseudocode: specifies how the module should be programmed

by using an informal language similar to structured English.

Figure 12 shows a sample structure chart and defines commonly used notations.

Using module specifications, a system designer is able to incorporate implementation
specific details using C language syntax. Attributes which further describe these details
are then added to the data dictionary. The C Source Builder is then used to generate
the C-source code files from the structured design model (structure charts and module
specifications). The resulting source code is compiled and linked to produce an
executable system. The compile/link process is done outside of the CASE workbench

environment.

Structured Analysis and Structured Design 56

plain modules seyrenet
o fancrion.

on_page_
connector

Figure 12: An example showing structure chart components,

Structured Analysis and Structured Design 57

TI IT

CASE tools are tools which leverage the requirements and design specifications phases
of the software development cycle, or that generate code. In this respect, the
Integration Toolkit is a CASE tool because it aids the integration system designer in

generating an integrated system.

The CASE workbench by CADRE is essentially converted into what is defined in this
research as the CAD/CAM CASE Workbench by using specific components of
Teamwork (the CADRE CASE product) in conjunction with the Integration Toolkit.
The Integration Toolkit will appear to the user as a part of Teamwork because it will be
integrated into the generic CASE workbench using the integrated product support
environment (IPSE) supplied by CADRE. The following Teamwork components are
used in addition to the Integration Toolkit to form the CAD/CAM CASE Workbench:

Teamwork/SA Based on Yourdon-DeMarco methodologies, this tool is an
editor for creating and editing data flow diagrams and mini-
specs (process specifications). It builds input and output lists
for every process node in the data flow diagram and allows
the developer to attach code to the individual process node
mini-specs. This tool aids the integration system designer in
the completion of the structured analysis and requirements
stage of the software development life-cycle.

Teamwork/SD An implementation of the Yourdon-Constantine structured
design methodology. The structured design module provides
for the definition of software modules in a top-down
structured chart. It also builds input and output lists, based
on data couples, for each module in the structure chart.

Integration Toolkit 58

Developers can incorporate code in each module's m-spec
(module specification) which is used by the source code
generator. This tool helps the integration system designer
complete the second stage of the software development life-
cycle.

Teamwork/IPSE The Integrated Product Support Environment (IPSE) is a tool
which serves as a framework into which other tools fit. It
enables tools and toolkits from various sources to be joined in
a common manner. Data sharing between components of the
workbench is enabled. The IPSE provides a common user
interface for tools.

C-Source Builder ~ Using the models created during the structured design phase,
the C-Source Builder automatically generates C-based source
files. The source code generator constructs external (global)
and function definitions from information found in module
specifications. The system designer can chose to place
implementation details in the module specifications and data
dictionary to ensure complete code generation. In fact, it is
possible to place C code directly in the m-spec which will
later be embedded into the final product. Source code files
built by the C-Source Builder can be compiled and linked
upon completion. The source builder enables easy editing of
module specifications and data dictionaries, as well as the
ability to store source code for common or repeated use. This
tool leverages the third step in the software development life-
cycle; implementation and coding.

Figure 13 shows how the Integration Toolkit option appears within the Teamwork
framework. From the figure it is evident that the Integration Toolkit, as it appears to

the user, consists of the following menu selections:

Integration Toolkit 59

g . B g /e oress

Source Cade Filenangr g clese secn.c

pocial Contideratonns: NOBC -
Purpene: . , U
'\ 6 Ce 4 tochot Which {5 nw Tenper aetive L
MIongs te 1IN . :
doin ITrinaiRitIzisiiasilaiiss w

v gclowe_smn.c

ST s
fonciion: evietes o wechet from v Dactst 1iW
Floned, A

0O \opPe 1 data ko Whaget & * &".ﬂt‘a‘..“.n_.&.‘.'—':_.m)."" bop?
) tockite o thy
LT N e r ')

5 Loed By: WIchete CF 1oshber
N bate et
. changed for gris interiacs My by w 871
N

MINELIIITEL ISR R T LA ERITINREINSFIAIERAEATIES,

‘.I';;w RO IR
“z' Vi bude csguiun.bs

==
L

. - Hantier
. ¥l e
L N
A Jo0 Dt
.
PR S 400 G L e RNt E [

Figure 13: Integration toolkit in CASE environment.

Integration Toolkit

- Analyzer

- DFD Integration System
- Create GRIM

- Create Client

- Modify Integration Server

- Opcode Tables

The analyzer parses application source code and extracts information on data structure,
I/0 capability, subroutines, etc. which are pertinent to the task of the integration

system designer. This information is stored in the workbench database.

The data flow diagrams represent the integration system as a whole and demonstrate
each component's role from a data perspective. These diagrams will be used by the
integration system designer to map the flow of any new data that he may need to add to
the system. A base set of diagrams is provided which defines the minimum data flow
in a valid system. Process specifications, or mini-specs, are produced for the lowest-
level process nodes in the data flow diagrams. These specifications describe how the
input data are transformed into output. A data dictionary defines the data elements
found in the data flow diagrams. It may also be used to store data definitions generated
as output from the analyzer. This aids the integration system designer in incorporating

application data into the data flow diagrams and structure charts.

For each of the menu selections designating a component of the integrated system, a set
of structure charts is provided which represents the base system. The term "base"
implies the minimum configuration of client and server which can be implemented

effectively. In order to expand the base system, the integration system designer will

Integration Toolkit 61

need to add modules to the client which are specifically geared to interface with the
CAD application. Transfer functions corresponding to the client application will be
appended to the integration server. In effect, the integration system designer will add
modules and m-specs to the base diagram to tailor the system to fit the new applications
and his needs. Module specifications exist for each module in the integrated system.

In the case of the base system, they contain actual source code used in system creation,
Application specific modules are indicated in the m-specs and need to be tailored to the
function or application by the integration system designer. Such m-specs could contain
source code, pseudocode, or functional descriptions. The m-specs will be used in

conjunction with the C-Source Builder to generate compilable code.

Opcode tables are used by the integration system designer to trace the flow of data
through the integrated system based on the communication protocol header which
precedes all data. These tables are graphical representations of the method by which
the modules responsible for handling the incoming signal will determine which function
processes the signal. Functions are placed in the table to indicate their positions with
respect to header data. The table has columns representing the five major opcode
categories, and rows representing the minor opcodes. These tables will be used in the
following discussions to illustrate the communication mechanism in the integrated

system.

In the following sections, a description of the DFD's is followed by detailed
discussions of each component's structure charts. The structure charts and data flow
diagrams accessed in the Integration Toolkit will be accompanied by module

specifications (used for code generation), process specifications, and a data dictionary.

Integration Toolkit 62

ive of the Distri In i luti

In order to describe the flow of information through the distributed integration system,
the product of the structured analysis phase of development, the data flow diagram,
will be used. Definitions of the data flows discussed in this section may be found in
the data dictionary included in Appendix A. The data circulating in the distributed
integration system is in actuality a request, response, or initialization information. It is
difficult to specify much of the data in any terms other than conceptual. For this
reason, actual data flow names may not translate directly to the structure chart
representations. Instead, the concept of the data flow is represented by using terms

descriptive of the data and its function in lieu of actual variable names.

The data flow diagrams developed for incorporation into the Integration Toolkit are
found in Appendix B. The process specifications which correspond to the lowest-level
process nodes in the DFD's are located in the same appendix following the diagram
they describe. There are several tools used to write process specifications. These
methods include structured English, decision tables, pre/post conditions, flowcharts,
etc. Many organizations tend to utilize only one tool to write process specifications.
According to Yourdon [Your89], the use of a single tool is a mistake. Instead, he
contends that a combination of the tools mentioned above should be used. The decision
of which tool to use is based on user preference, programmer preference, and the
idiosyncratic nature of the various processes. The process specifications located in
Appendix B use decision tables, structured English, and pre/post conditions to define
the process nodes of the data flow diagrams. The reader may find it helpful to refer to

the data dictionary and process specifications when deciphering the data flow diagrams.

Integration Toolkit 63

We will now discuss a few of the data flow diagrams. In the course of describing the
diagrams, the analysis process which went into the design of the distributed integration
solution will be described. The first diagram one must consider is the context diagram,
shown in Figure 14, The context diagram is defined as the top-level of a hierarchical
set of data flow diagrams. It represents the entire system in terms of a single process,
shown as bubble 0. The diagram is used to delineate the scope of the analysis and
define the system in terms of inputs and outputs. The context diagram, in conjunction
with the data flow diagrams derived from it, enables the integration system designer to
identify the major transactions of a system in terms of inputs and outputs. In order to
determine a solution to the problem of integration of CAD/CAM applications in a
network environment, the scope of the system in terms of inputs and outputs must be
defined. The context diagram shown in Figure 14 demonstrates the external influences
on the integration system. The user is considered a terminator (an external source of
data input and/or output) because based on the presence of choices, he will make
decisions and transmit them to the integration system. In an effort to retain control of
data exchanges in the integration system, data requests are the only method by which to
effect data exchanges. This means that it is not possible to send data to a second
application in the integrated system unless it has been requested by a user at the second
application, This eliminates the possibility that a user could be creating a model at an
application and suddenly have it overwritten by data that has been sent into it from
another application. Furthermore, it does not make sense for a user to send data to
another application unless he will be using that data himself. Given this scenario, the
constraint that all data transactions must be requested from the application which will
receive the data is valid. In addition, Figure 14 shows the applications as terminators.
The applications are considered as external to the integration system; however, they do
interact with it by sending and receiving application data. By designing the

Integration Toolkit 64

User

ch
“dlta o sion
application 1 integrated dat application 2|
Sys PP

10] ala_To_spplication
0

v

Figure 14: Context Diagram of the integration system.

Integration Toolkit

applications as external, it is easier to isolate applications from changes applied to other
applications in the integrated system. All necessary modifications will be made internal
to the integration system instead of to the application itself. It is important to mention
here that only two applications have been used in these diagrams in order to simplify
the data model. However, the rules developed for two applications can be extended to

cover n applications.

The next data flow diagram described is one level below the context diagram, data flow
diagram (DFD) 0. This diagram is shown in Figure 15. This diagram shows the
integration system broken down into the integration server and client interfaces to the
CAD/CAM applications. The integration server was designed such that the users of the
applications in the integrated system can be unaware of its function or existence. This
means that the integration server will be able to run as a background process on one of
the machines in the network, allowing clients to connect to and disconnect from the
server at any time. By hiding the integration server, instead of making the application
users responsible for initiating contact between the server and their applications, the
proper integration client/server relationship is retained. The client interfaces represent
the portion of the integration clients which will act as an interface between the
CAD/CAM application, the user, and the integration server. The interfaces and even
the integration server help to isolate the applications in the integration system from
modifications to applications with which they exchange data. The reason this isolation
is possible, is that transfer functions at the integration server can be updated to reflect
changes in data being sent from a modified application. On the other hand, if an
application is modified such that it needs to receive more or new types of data from a

second application already defined in the system, the second application must be

Integration Toolkit 66

ice_data

om_application

—

Client
In%erlneo

Interface
2

o_application

Figure 15: Data flow diagram of the integration server and clients - DFD 0.

Integration Toolkit

67

modified at the interface level as well as modifying the transfer function. This still

minimizes the amount of change to applications in the overall system.

Figure 16 shows DFD 1, which represents the client interface in terms of the GRIM
(user interface to the integration system) and the socket interface (between application,
GRIM, and integration server). This diagram was developed under the assumption that
source code for the application is available. If the source code can be obtained, the
application can be modified to share a common buffer with the socket interface into
which data from and for the application are placed. The data which are sent to the
socket interface from the integration server can either be destined for the application,
the GRIM or the socket interface. Data destined for the application originated from
another application in the integration system (as a result of a request generated by the
user at the receiving application). The data have been transformed or translated by the
transfer functions of the integration server into a format acceptable to the socket
interface which receives the data and places them in the common buffer for access by
the application. Data destined for the GRIM, such as a list of clients in the system
from which data may be requested, are received by the socket interface and relayed to
the GRIM. The socket interface, often referred to as the AP/SOCK interface, and the
GRIM run in parallel and communicate over asynchronous sockets. This configuration
was chosen because the task of integrating a user interface to the integration system
directly into the CAD/CAM application would mandate the utilization of source code
and would be time consuming to effect. Instead, the approach of designing a generic
interface which will work will all applications regardless of source code availability
was taken. This means that the GRIM manages both user input and signal reception
from the AP/SOCK. By separating the GRIM and the client application (AP/SOCK
interface and CAD/CAM application), the application is able to execute without

Integration Toolkit 68

decisiop_data

data_for_cllient1

Figure 16;: Data flow diagram of the client interface - DFD 1.

Integration Toolkit 69

managing the user interface. When a sequence of user interactions at the GRIM
triggers a request event, the GRIM sends a signal to the AP/SOCK interface. The
occurrence of a signal at the AP/SOCK will suspend the application's execution. Once
the signal has been evaluated and handled, for instance when the user request is
forwarded to the integration server for further evaluation, control returns to the
application at the point it was suspended. Data which are destined for the AP/SOCK
interface include requests for the applications name. Requests of this sort are generally
used by the integration server for management purposes. For example, the integration
server keeps a list of all client applications currently connected to the integration system
and is able to cross-reference application name with the socket descriptor which defines

the integration server/client communication path.

Figure 17 shows DFD 2.1 which describes how the integration server handles data
from a client in the integration system (in this case the client is called client 1), As was
mentioned above, the integration server is able to determine the socket descriptor at the
server which communicates with a client given the client’'s name. The server also sets
up a data structure containing exchange relations. This data structure is created during
the initialization of the integration server, and enables the server to determine which
clients can request data and which can send data. By using the relation data structure in
conjunction with the current list of connected clients, the integration server can issue a
list of clients from whom a newly connected client can request data. The relations file
is read at initialization of the server in order to avoid rereading the file every time a
new client requests connection with the server. Data sent to the server from a client in
the integrated system an be one of three types: data generated by the user at the GRIM

which needs to be forwarded to another client in the system, data necessary for

Integration Toolkit 70

Accept
COn:lpocllon

or_client2

Uget_in_data

Determine
Type

list_of_sxchynge_spplications

Data
Destinsd

for Widget

init Request

Add Header
and Send

to Cllent 2
9

widget_request_forward_server

Evaluate
Data by
Header

Evaluate
Data

Type
2

Hestined

8_epp_ocut

tr

data_frém_cllentt

nsfer_data

Transform

Figure 17: Data flow diagram of the integration server - DFD 2.1.

Integration Toolkit

7

connection or initialization the client, or data which must be treated by the integration
server. Figure 17 labels these data items as widget_request_forward_server,
initialize_client, and response_app_out, respectively. Data which needs attention from
the server includes data which must be sent to a transfer function in the server before
being sent to another client in the system, data which represents the termination of a
client in the system, or data which needs no treatment from the server and simply needs
to be relayed to another client in the system. These three types of data are shown in
Figure 17 as transfer_data, server_destined, and relay_data, respectively. Before
sending data on to a second client in the integration system, the integration server

prepends a header to the data which will enable the message to be evaluated correctly.

The data flow diagrams discussed in this chapter have been used to describe the
analysis and requirements phases which were used to create a solution for integration in
a network environment. More detail on the data flow diagrams which describe the

system can be found in Appendix B.

n ion solution in
The structure charts, which an integration system designer will modify to produce an
integration system, have been split into the GRIM, the client application, and the
integration server. Since the GRIM and the client application run independently of one

another, they are developed separately. Hence they have separate structure charts and

-menu items in the Integration Toolkit. A description of each set of charts is contained

in this section. The structure charts for each component and their module
specifications appear in Appendices C, D, and E. Appendix F contains, among other

things, the module specifications for commonly used utility routines. The utilities can

Integration Toolkit 72

also be used by more than one component in the integrated system and are grouped
together for reuse. Appendix F also contains the header "mysock.h" which defines
common structures used in all components of the integration system. Such definitions
include the header and the socket structure. The following description of the structure
charts is more or less on a conceptual level. For details of implementation, it will be
necessary to read the m-specs for the set of structure charts described. The m-specs
contain actual C source code which will be used to build the integration system.
Comments interspersed throughout the m-specs will enable those persons interested in
implementation detail to understand the function of each module. Please note that
during the discussion of structure charts, module names are bold and data couples are

italicized.

6.2.1 GRIM Structure Chars
The GRIM widget is essentially a generic element of the integration system before a
client application connects to it and assumes ownership. This is one reason why a

separate group of structure charts has been created for the GRIM.

Every client application in the integrated system must have its own GRIM., The
method by which this is ensured is by defining identical pathnames, which correspond
to a unique UNIX socket identifier, in both the GRIM and client application. To do
this, the integration system designer must modify the top module in the client
application and several modules in the GRIM where pathname is defined. Modifying a
module implies that its module specification is edited or changed in some way. When
this has been done for the GRIM, its source code may be compiled and linked. The
GRIM executable should be given a unique name which allows it to be associated with
its owning client,

Integration Toolkit 73

The Integration Toolkit essentially uses this method to produce a GRIM widget for a
given client application. Since only pathname needs to be modified, the module
specifications containing source code for the widget will need to be updated. The
resulting m-spec will be used in conjunction with the CADRE C-Source Builder to
produce the executable widget interface. Selection of the “Create GRIM" menu in the
Integration Toolkit will cause the display of an information panel with the following

message.

"In order to complete the task of creating a new GRaphical Interface Manager,
three m-spec (module specifications) objects must be updated:

1) GRIM
2) g_close_sock
3) g_make widget

When you click OK, the m-specs for these modules will appear in three separate
windows [in the Teamwork environment]. You should correct the value of the
<pathname>> constant in each of the three files. This will be the first line of
source code in each m-spec. After correcting this line [in each object], close
the object file and run the C-Source Builder to generate the C source for the
GRIM application.”

If the integration system designer selects the OK button, three objects are opened in the
CADRE environment. Each of these object files needs the pathname definition edited.

After the new pathname has been added, the object is saved and exited. This process is
repeated (edit pathname, save and exit file) until all necessary files have been modified.

The C-Source Builder is then invoked to produce an executable with a unique name.

The client application is subsequently modified to accommodate a CAD/CAM
application which is targeted for integration into the system. When the client
application has been completed and an executable has been made, a UNIX script file is

Integration Toolkit 74

used to invoke the GRIM and the client application in such a manner that they run

independently and cooperatively.

For the sake of completeness the GRIM structure charts have been included in the
Integration Toolkit. These GRIM structure charts and corresponding module
specifications can be located in Appendix C. A description of the structure charts and

their modules follows.

GRIM is the main module of the GRIM widget. Its first task is to open a socket on
which to listen for connection requests from the client application. In order to uniquely
define the socket in the UNIX domain, the pathname defined at the top of this module
must be modified. The resulting pathname must be known by the client application
which owns the widget in order for communication to occur. The socket, Sock, is

created as the listening socket and is known globally within the GRIM program.

The next module invoked from GRIM is called g_make_widget. This is the module
responsible for creating and displaying the basic widget which will be used in
conjunction with the client application. The basic GRIM widget is shown in Figure 7.
All code for the modules called from g_make_widget is included in the same m-spec.
Following the structure charts, we can see that the main window widget is created and
a menu bar widget is added to it. A pull-down menu called ACTION is established as
part of the menu bar. The creation of the reset and exit choices for the pull down is
shown in the module MakeMenuBar as CreateMenuButtons. The reset and exit
options have callback functions associated with them which define the required action
taken when either is selected by the user. It is necessary to note here that the callbacks
are drawn in the GRIM's structure charts as being invoked asynchronously. This is

Integration Toolkit 75

because they could be called at any time based solely on user input. In the remaining
discussion, callback functions are not explicitly stated as being present. Instead the
description of a widget's action should imply that a callback is responsible for

executing that function when necessary.

As can be seen in MakeSelectionBox, the selection box contains several possible sub-
widgets, two of which are used here, as shown in Figure 7. They are the selection list
widget and a selection dialog. The selection dialog is not shown in the structure charts,
but it's purpose is to display the name of the last-chosen selection list item. Other
widgets normally used with the selection box widget are not necessary and are therefore
unmanaged. In MakeOtherStuff, a framed form widget containing three toggle

buttons is added to the selection box widget.

Once the basic widget has been created and realized, a work procedure is checked. A
work procedure forces XtMainLoop to branch to a function called g_select_loop when
there are no input events on the GRIM widget. The g_select_loop function enables the
GRIM to check for signals arriving from the client application. In order to do this, a
read_mask must be defined. The mask is essentially a filter which is set to contain all
socket descriptors on which the GRIM expects to receive signals. Before the client
application connects to the GRIM, the only socket descriptor in the mask is the
listening socket, Sock. Once connected, the client application's socket (defined at the
acceptance of the connection) is included in the readmask. The select function (from
the BSD socket library subroutines) checks all sockets in read_mask. If a signal is
detected, it modifies the readmask to contain only the socket descriptor on which the
signal occurred. If no signals are present, the work procedure returns control to
XtMainLoop.

Integration Toolkit 76

If a signal is present, however, the readmask is passed to g_eval_sel. This module
determines on which socket the signal occurred by comparing the socket data structure
with the readmask. If the signal came in on the listening socket, the client application
is attempting to connect to the GRIM. In this case, the connection is accepted and a
message requesting the client application’s name is sent. This process occurs only
during initialization of the GRIM. If the signal came in on the socket connected to the
client application, a header is read from the signal. If there is no data on the socket,
the signal was meant to indicate that the client application terminated. As a result, the
socket is closed and the widget self-terminates since the client it served is no longer
active in the integrated system. If there are header data on the socket, the header is
sent to g_sw_op where it is resolved. In the GRIM structure charts, the term
read_sock refers to the socket on which the signal occurred. It is called read_sock
because the data present on the socket must be read in order to determine its contents.
Table 1 illustrates how the header is resolved based on major and minor operation

codes contained in the header. A description of each module handling signal data

follows:

g_add name A header with a major opcode of 0 and minor opcode of 0 is
handled by add_name. Add_name reads the name of the client
application from the socket and creates a motif-based string from
it, The string is then added to the widget to show the client to
which the widget is dedicated.

g_add_to_list This module builds the client selection list one item at a time.

The number of items in the list is sent in the size_in_bytes
portion of the header structure. All client names which comprise

Integration Toolkit 77

Table 1: GRIM opcode table

major opcode major opcode major opcode major opcode major opcode
0 1 2 3 4

minor opcode

0 g_add_name g_get_new_list
minor opcode

1
minor opcode

2 g_add_to_list
minor opcode g_make_attrib

3 _list

Integration Toolkit

78

the list are read from the socket and placed in the widget for
display.

g_get_new_list This module uses the size_in_bytes portion of the header as a flag
to determine whether to add or delete a client from the selection
list. Based on the flag, the client name read from the socket is
added to or deleted from the existing selection list.

g_make_attrib_list This function is called when the list items of another client's
attribute list must be displayed. The name of the client who sent
the list is read. A bulletin board widget is then created which
will be appended to the selection box widget of the basic widget
created earlier,

The bulletin board widget displaying an attribute list is shown in Figure 18. As shown
in the figure, the new widget consists of an OK button, a cancel button, and a list of
attributes. By choosing a list item and the OK button, a request for that data item is
sent to the client from which the attribute list originated. Cancel will exit the bulletin

board.

5.2.2 Client Application S o

A base representation of a client application is contained in the Integration Toolkit.
This representation is in the form of structure charts and m-specs included in Appendix
D. There are several modules included in the client application structure charts which
are application specific. These modules have m-specs which declare the fact that the
module must be tailored to fit the CAD/CAM application into the integrated system.

For example, the module main_ap is a CAD application which has been modified to be

subordinate to the ap_sock module. The m-spec corresponding to its module alerts the

Integration Toolkit 79

Exchange Selection For My Client Name
[?Application A - .. oo E ol

Application E

1 REQUEST BUFFER DATA FROM CLIE
B CLIENT ATTRIBUTER — | Client Attribute Li

lln

Builetin board
widget containing
client attribute
list from
application A

O ACTIVATE EXCHAN

o

list item 1
list item 2
list item 3
list item 4
list item 5

list item 7
list item 8
list item 9

list item 6 /

Figure 18: GRIM widget displaying attribute list.

Integration Toolkit

80

integration system designer to this fact. By identifying the modules where application
specific code must be inserted, the integration system designer can easily construct a
minimally configured integration system. In other words, more sophisticated data
exchanges and messages may be added to the clients and integration server once a
thorough understanding of the communication process and system architecture is
achieved. This is done by first identifying a data exchange transaction. The
integration system designer then designs a module located at the responding client
which will supply data, and a module located at the requesting client to receive data.
He then creates a transfer function for the integration server which will transform or
translate the data from the responder to the requester. The correct headers must be
constructed in each module that is sending data. Function names will then be placed in
the opcode table such that they will handle the data meant for them. An example of
such an opcode table, Table 1, was seen in the previous section. These tables are
graphical representations of the function used to determine which module to call based
on header information. Opcode tables are included in the Integration Toolkit to aid an

integration system designer in tracking the flow of data through the system.

An important element in client application modules is the use of two global variables:
ACTIVE_WIDGET and ACTIVE_SERVER., Initially, they are set true when
connections to the GRIM widget and integration server are established, The variables
are changed to false if either the GRIM widget or the server terminates before the client
application. These indicators are checked before any data are sent to either server.
This avoids the occurrence of serious errors in the system. To describe the client
application as contained in the Integration Toolkit, we will use the client's structure

charts as a guide. As a reminder, module names appear in bold and data couples are

Integration Toolkit 81

italicized. Also, the terms requester and responder, as used in several modules, refer

to the client initiating a data exchange and the client supplying data for the exchange.

Ap_sock is the main program of the client application portion of the integration client.
The first task it performs is the creation of two asynchronous sockets, Sock and Sock2.
The first is an Internet socket which will be used for communication with the
integration server. For this purpose, the port number and Internet address of the host
machine on which the server resides must be known. The second socket, Sock2, is
used by the client application for communication with its dedicated GRIM widget in the
UNIX domain. For this to be possible, the pathname of the socket file used must be
identical in the client application and GRIM. Once these sockets are created, the client
application issues connection requests until both sockets are accepted. After
connections have been established, the client application asks the server for a list of
clients from which he can request data. This list will be used to initialize the client's
GRIM widget selection list. Ap_sock then invokes the CAD application. In order for
the AP/SOCK and the application to share vital information with one another (assuming
application source code is available), common data must be initialized in the ap_sock
module and passed to, or referenced in, the CAD application. All initializations of
common data elements must be deleted from the CAD application. In this manner, a

common data buffer is established.

Because the sockets used by the client application are asynchronous, an event handler is
created to check continuously for signals incoming on the sockets. This is done
without disrupting the execution of the CAD application. When a signal does arrive,

the CAD application is suspended until the signal has been "handled". When

Integration Toolkit 82

processing of the signal has been completed, control is returned to the CAD application

which resumes at the point it left off.

The signal is detected in the handler by the select subroutine which sets read_mask to
include both active sockets. When a signal is detected, the read_mask is reset to
contain only the socket descriptor on which the signal occurred. This means that either
Sock (the server socket) or Sock2 (the GRIM socket) is the read sock sent to the
function ¢l_rdmsg. Cl_rdmsg reads a header's worth of data from read_sock. If no
data are present, the signal indicates that the connected process has terminated. If there
are data, the header is read and sent to the function ¢l_swop. This module is
responsible for evaluating the header based on major and minor opcodes. Table 2

shows a graphical depiction of how modules are located based on the header opcodes.

send_name This module will send the application's name to the process
connected to the socket by the read_sock. The process could be
either the integration server or the GRIM widget since they both
need this information.

get_cl_list The module accepts the list of exchange clients from the
integration server. The list is then relayed to the client
application's GRIM widget for display. In this case, read_sock
represents the server socket (Sock) and write_sock the GRIM
socket (Sock2).

relay_data_request This function reads the name of the client
that will respond to the request (responder). The module then
builds a header which will direct the server to the module that
will handle the relay of this request for buffer data. The header,
responder, and requester (name of the client requesting the data)
are then sent to the integration server. In this scenario, the

Integration Toolkit 83

Table 2; Client application opcode table

major opcode major opcade major opcode major opcode major opcode
0 1 2 3 4

minor opcode

(1} send_name update_widget
minor opcode relay_data respond_to_

1 _request receive_buffer | buffer_request
minor opcode

2 get_cl_list
minor opcode relay_attrib

3 req_anrib_list _list give_aurib_list
minor opcode req _from_ respond_attrib

4 atirib_list _item

Integration Toolkit

84

req_attrib_list

req_from_attrib_list

update_widget

read_sock represents the GRIM socket, since this is where
requests for buffer data originate. Write_sock corresponds to the
server socket.

The first step performed by the module is to build a header which
will direct the integration server to the function that will relay the
request for an attribute list to a client in the integrated system.
The name of that client is read as responder, and subsequently
the header, requester, and responder are sent to the server.
Again, read_sock is the GRIM socket and write_sock the server
socket,

This function first builds and writes a header that will allow the
integration server to locate the module which will receive the
requested list item from an attribute list. This information is then
relayed back to the client which owns the attribute list. The
name of the client that will respond (responder) is read.
Subsequently, responder and requester (client requesting the
transaction) are written to the integration server, The list item
number, list_num, is then read from the GRIM socket and written
to the server socket.

This module receives a name from the server along with a flag
carried in the size_in_bytes field of the data header. This
information is passed onto the client application's GRIM widget
where the flag indicates whether to add or delete the name from
the selection list (list of exchange clients).

The last five functions that will be discussed are all application specific.

receive_buffer

Integration Toolkit

This module is used to receive buffer data that were requested
from a client in the integrated system. The data structure of the
receiving CAD application will dictate the order and form with
which the data from the integration server are read. Once this

85

relay_attrib_list

respond_to_buffer

give_attrib_list

respond_attrib_item

Integration Toolkit

information has been determined, it is then possible to design the
portion of the server module that will be sending these data to the
receiving client. It is important to remember that the order in
which the data are sent to a socket is the order in which they
must be read.

This function is dependent on the order and format with which
the requested attribute list is sent from the server, It is possible
that this could be a generic module with the number of list items
being variable, but the items themselves are text strings. In this
case, the example given in this module's m-spec can be used in
the base system as it appears.

This module supplies data in response to a request from a client
in the integrated system for its current buffer data. Again, the
data structure of the current model determines the form of the
message generated. The transfer function at the server which
receives this data must be aware of the order and form in which
these data are transmitted.

It is the task of this module to compile a list of data-related
attributes that other clients in the integrated system can ask to
see. This list can be dynamic in nature if it depends on the
current model for information.

This module produces the data which correspond to items on the
attribute list which this client has sent to other clients in the
integrated system (see give_attrib_list). Its first task will be to
read in the list item identifier and gather data which the list item
represents. '

86

6.2.3 Integration Server Structure Charts

The server component of the integrated system is implemented in the Integration
Toolkit as a series of structure charts. These charts and the m-specs which describe
them are in Appendix E. The structure charts are composed of modules, each of which
have a corresponding module specification (m-spec) that contains actual C-source code
when possible. The only changes or additions to the integration server occur in the
module called resolve_header which invokes transfer functions to treat incoming data
based on the major and minor opcodes contained in the signal header. This will be

explained in more detail as the discussion progresses.

Just as in the case of the client application structure charts, the minimum system
configuration can be achieved by filling in modules that are only stubs in the structure
chart. "Stub" means that no C-source code exists in the module specification because
the module is application specific and cannot be generalized. A minimum
configuration is one in which clients request data as defined in the data flow diagrams
described earlier. It is imaginable that information other than that defined in the data
flow diagrams needs to be passed in the system, The integration system designer can
modify the server and clients, using the Integration Toolkit and the CASE workbench,
to generate and receive these new data. The methodology used to do this was described

at the beginning of the previous section on client application structure charts.

The server is meant to run continuously as a background process with a well-known
port number, allowing clients to connect and disconnect at will, Client activity of this
sort does not have an adverse effect on the integrated system as a whole. The
integration server is also modular since functions can be added to the subroutine that
manages the transfer functions (resolve_header). To get a sense of how the integration

Integration Toolkit 87

server functions, a module-by-module description of the structure charts follows.
Please note that the data structure sock_struc contains the number of sockets currently
connected to the server, an array of those socket descriptors, and an array of client
names which correspond to the processes connected to each of the socket descriptors.
This data structure is defined in the include file mysock2.h which is located in

Appendix F.

Serv is the main module of the integration server. Its first task is to read the file which
contains a list of relationships between clients in the integrated system. In other words,
a list of clients who can send data and those who can request or receive it. For every
relation listed in this file, there must be a transfer function at the server that can handle
the exchange of data between those two clients. An example of file entries is shown in
Figure 19. The term "sender” in the relation file implies the application which can
generate data and “"receiver” the application that can request and receive these data.
From the figure, we can deduce that client X can request data from client Y and vice
versa. However, the ACSYNT/B-Spline Toolkit data exchange is valid only in one
direction. Using information obtained from this file, a global data structure called
xchg_struct is filled. This data structure will be used to compile a list of exchange
clients for new clients in the system. It is also referenced when updating clients in the
integration system because a client process has terminated and can no longer supply
data. In the C source contained in the top-level integration server m-spec, the filename
of the relation file is defined as exchange_buds. This is the name of the file used in the
prototype. This name is easily changed by editing the m-spec and changing the

filename.

Integration Toolkit 88

NUMBER OF EXCHANGES IN FILE = 5

SENDER = ACSYNT/
RECEIVER = B-SPLINE TOOLKIT/

SENDER = ACSYNT/
RECEIVER = B-SPLINE TOOLKIT 520/

SENDER = ACGSYNT/
RECEIVER = B-SPLINE TOOLKIT SGI/

SENDER = CLIENT X/
RECEIVER = CLIENT Y/

SENDER

= CLIENT Y/
RECEIVER =

CLIENT X/

Figure 19: Sample relation file entries,

Integration Toolkit

When the exchange data structure (xchg_struct) is complete, the program opens a
socket on which to listen for connections. A socket data structure (sock_struc) is used
to keep track of the socket descriptors and the name of the client processes with which
they communicate. Once the initialization phase is complete, the integration server
repeatedly executes set_sel. This function will continuously check to see if there is any
activity on any of its sockets. A read_mask is set to include all sockets managed by the
integration server. The select subroutine looks at all the sockets in the read_mask for
activity. If a signal has occurred, the read_mask is modified to contain only that socket
which has received the signal. The read_mask and the sock_struc (containing all socket
descriptors and their client names) are passed to is_eval_sel. This function checks the
read_mask against all sockets in sock_struc to determine on which socket the signal
occurred. If the signal occurs on the listening socket, it is a connection request from a
new client. The connection is accepted and the resulting socket is put into sock_struc.
In order to cross-reference this socket descriptor with its client name, the integration
server must obtain the name of the client connected to it. To obtain this information,
the server sends a request to the new client for its name. Additionally, all clients who
can request data from the new client are instructed to add its name to their selection

lists.

If the signal occurs on any socket other than the listening socket, the socket descriptor
(read_sock) and sock_struc are passed to rd_msg. This module is responsible for
reading the header from the active socket (read_sock). If no header data are present,
the client process to which the read_sock is connected has terminated. The socket is
closed and all clients in the integrated system which had listed that client in their
selection lists are informed to delete its name from the list. If there are data on the
socket, the header is read and sent to resolve_header along with the sock_struc.

Integration Toolkit 90

Resolve_header determines which module will handle the signal based on the

maj_opcode and min_opcode fields of the header data. Table 3 graphically depicts how

the major and minor opcodes are used to locate modules within the integration server.

put_cl

det_list

request_data

Integration Toolkit

This module receives the name of a new client in the integrated
system and puts the name in sock_struc to allow the new client's
socket descriptor to be referenced by name as well. The client
name is then sent to update_widget which will compare the new
client name with the sender elements of the exchange structure
(xchg_struct). Whenever there is a match, the receiver in the
exchange structure array which corresponds to the sender is a
client which can display the new client's name in its selection
list. Write_sock is the socket descriptor which corresponds to
these clients. The new client's name is sent to all clients who can
request data from it.

This module fills the request for an initial list of clients for the
selection list. This request is issued by a client who has recently
connected to the integrated system. The module first reads the
name of the new client and then passes the name, the read_sock
(which is the new client's socket) and the sock_struc. The next
step is to match the new client's name with the receiver field of
the xchg_struct (structure containing sender/receiver data
exchange relationships). A list of clients who can send data to
the new client is compiled, a header is constructed, and both are
written to the new client. The header field size_in_bytes contains
the number of list items the new client should expect to receive.

Requester and responder are used by the server to receive data
from one client, determine the responding client's socket
descriptor based on its name, and then to pass on the data to the
responding client. This module's purpose is to relay a request for
buffer data from the requester to the responder. The function

91

Table 3: Integration server opcode table

major opcode major apcode major opcode major opcode major opcode
0 1 2 3 4

minor opcode

0 put_cl
minor opcode

1 det_list request_data transfer_|
minor opcode

2
minor opcode request relay_atirib

3 attrib_list _list_s
minor opcode request_from

4 _atirib_list

Integration Toolkit

92

request_attrib_list

request_from
_attrib_list

reads in the requester and responder names. The socket on which
the responder communicates with the server is determined by
cross-referencing the responder with its socket descriptor. The
server function then constructs a header and sends it along with
the requester's name to the responding client.

The purpose of this module is to relay a request for an attribute
list from the requester to the responder. Both names are read by
the server function, the responding socket is located (using
sock_det) and a header is built. The header, the requester's
name, and the responder's name are sent. The responder is sent
its own name because it will in turn send it back to the server in
its responding message along with the attribute list .

The purpose of this module is to relay an item number from the
requester to the responder. This item number corresponds to an
element of the attribute list belonging to the responder. The
function reads responder and requester from the socket connected
to the requester. The responder's name is used to locate its
corresponding socket descriptor, response_sock. A header is
built and sent over response_sock along with the requester's name
and the list item which requires action.

The last two functions discussed are application specific.

transfer_1

Integration Toolkit

The purpose of this module is to receive data from a particular
client in the integration system and transform or translate that
data into the format used by the requesting client. The easiest
way to structure this module is to have sub-modules called from
the main transfer function which are each dedicated to one
receiving client. In this manner, the data sent to the transfer
function can be treated specially for each client and modified,
manipulated, or even just relayed to the receiver (client which
requested the data). The choice of sub-module can be made

93

using a switch statement based on the receiver's name. The
client that sends data to the transfer function can send all the data
it can compile which will satisfy all data possibilities demanded
by the sub-modules. By doing this, the server takes the
responsibility away from the sending client.

relay_attrib list s The purpose of this module is to accept a list of attributes from a
responding client and send it on to the client which requested it.
It is left as application dependent at this point, though it could be
generalized if the attribute list were limited to text strings. In
this case it would suffice to send the number of list items in the
header field size_in_bytes, followed by the list. Requester and
responder will need to be sent as well.

In summary, it is necessary to give an overall sense of how the integration clients and
server interact. The clients can be arranged such that they are all on different
workstations which are part of a network, all on the same workstation, or a
combination of the two preceding possibilities. If one or more clients occur on the
same workstation, they will appear in separate windows, as will each of their GRIM
widgets. For n clients on one workstation there will potentially be 2n windows. The
integration server can be located on the same machine as one or all of the clients, or on
a different workstation in the network. The integration server executes as a
background process; therefore, there will not be a window dedicated to the server
process. This description will become more obvious in the next chapter which
discusses the distributed integration solution prototype.

Integration Toolkit 94

7.0 DI RATI ION PROT

To test the validity of the integration solution, a prototype integration system has been
developed. This prototype uses two significant CAD applications developed in the
Computer-Aided Design Laboratory of Virginia Tech which are integrated using the
method of freely connected interfacing. The first application is called ACSYNT
(AirCraft SYNThesis), which was developed jointly at the Virginia Tech CAD
Laboratory and NASA Ames Research Center. It is an interactive design and analysis
tool used to develop conceptual models of advanced aircraft. The application uses the
FORTRAN, C, and PHIGS standards. The main module of ACSYNT was written in
FORTRAN, and it is this module which must be invoked from the AP/SOCK interface.
The second application in the prototypical system is the ACSYNT B-Spline Module (B-
Spline Toolkit). Although the name implies that the B-Spline Module is part of
ACSYNT, the two applications are separate and independent programs which were
designed to complement each other. The applications were designed such that the B-
Spline Module is able to read hermite data files created by ACSYNT. The B-Spline
Module is an interactive CAD application which converts the geometry descriptions
commonly used in conceptual aircraft design codes to descriptions which meet the
requirements of preliminary design systems. The module enables designers to compute
intersections of surfaces described using non-uniform bi-cubic B-Splines and uses a
filleting algorithm to blend surfaces along iso-parametric curves. This application is C-
based and also uses the PHIGS standard for graphics. Though these two applications
were created to work together, they do not have similar data structures. ACSYNT
produces geometric models which use hermite surface representations. The B-Spline
Module can read files containing hermite surface data, but internally, surfaces are
represented as nonuniform B-Splines.

Distributed Integration Solution Protorype 95

The machine chosen to host the integration server is an IBM RISC System/6000 Model
530. In this implementation, the two clients can be accessed on the 530 or an IBM
RISC System/6000 Model 520. The communication protocol is TCP/IP using Ethernet
adapters at the workstations. The BSD socket libraries vary slightly on workstations
from different vendors, but the porting process from one UNIX-based workstation to
another is relatively simple. For example, the clients, initially developed on the IBM
RISC System/6000 under the ATX (IBM's implementation of UNIX) operating system,
were ported to the SGI platform in a single afternoon with the exception of the GRIM
interface. This is because the current implementation of the SGI in the lab runs using
the windowing system called NeWS instead of X-Windows. Because of this
discrepancy in windowing environments, the GRIM would need to be ported to utilize
the interface toolkit called 4Sight, which is the NeWS equivalent of Motif. The Silicon
Graphics platform is also capable of operating under X-Windows, and if this were the

case, no port of the GRIM interface would be necessary.

The first step in the design process was to determine the data exchanges possible within
the integrated system. It was decided that the B-Spline Module should be able to
request data pertaining to the model in ACSYNT, but not vice versa, The transaction
path is one-way because, although the B-Spline Toolkit can handle hermite surfaces and
modify them to produce nonuniform B-Spline surface representations, the ACSYNT
application presently has no ability to utilize B-Spline surface representations in the
analysis portion of the program. With this in mind a file of exchange relations, called
exchange buds, was created and the ACSYNT application was defined as the sender,
while the B-Spline Toolkit was defined as the receiver. This file will be read by the

Distributed Integration Solution Prototype 96

integration server at initialization and used later to compile exchange client lists which

are displayed in the GRIM widget of each client application.

In order for the user to request data exchanges in the integrated system, a GRIM widget
must be created for each client application. The pathname in the GRIM modules was
changed to a unique value for both the B-Spline Module and ACSYNT"'s widgets, then
each was compiled using an unduplicated name for the executable file. The executable
widget which is dedicated to the B-Spline Module is called grimmy, while that which
belongs to ACSYNT is called grim2. The pathnames used to produce the widgets must
be duplicated in their owning client application's main module if communication is to

occur between them,

Next, the client applications must be created. Using the base system structure charts in
the Integration Toolkit, it is easy to determine which modules are application specific
(this information is contained in the m-specs). The main module of each client
application must be modified to include the unique pathname of its GRIM widget and
to make global any data that are common to the client interface and the CAD
application it manages. A description of how ACSYNT and the B-Spline Module were
modified to fit into the form of the client application follows. Often the exact order of
module execution is not preserved when describing a module's function. This is done
when the function of the module is more easily understood when events are explained

in a modified sequence. In any case, the concept remains intact.

Distributed Integration Solution Prototype 97

7.1 _The ACSYNT Client Application

Following the flow of the client application structure charts contained in the Integration
Toolkit, the first module modified was ap_sock. In this module, the pathname
definition was changed to match that of the pathname defined in grim2 (ACSYNT's
GRIM widget). The pathname was defined as /u/michele/grim/acsynt/s.acssock, where
s.acssock is the UNIX socket filename. Next, the main module of ACSYNT had to be
changed to a subroutine, thus allowing it to be invoked from the module main_ap. It
is not a problem that the calling module is C-based and the subroutine is FORTRAN-
based. Since ACSYNT is primarily a FORTRAN-based application, any data used in
the common buffer shared with the client interface would need to be passed in an
argument list to the subroutine which was formerly ACSYNT's main module. In the
case of this CAD application, a common data buffer was not needed. Instead,
functions defined in ACSYNT were utilized which access a geometry database
containing current information on the displayed model were utilized. More explanation
on these functions will be given as the discussion progresses, but the main point is that
no data needed to be passed into ACSYNT from the client interface; therefore, no data

were declared as global between the two.

In order to send data to the integration server for eventual transfer to the B-Spline
Module, the modules called by cl_swop which transmit model data need modification
for use with ACSYNT. There are three modules which will need development. These
are the modules which respond to a request for buffer data, compile an attribute list for
ACSYNT models, and respond to a request for an item from the attribute list. No
action is necessary for modules designed to receive buffer data from another client or to
relay the attribute list from a second client to its dedicated GRIM widget. This is
because the only other client in the integrated system, the B-Spline Module, will not
Distributed Integration Solution Prototype o8

send that kind of data since its only function in the system is to receive data from
ACSYNT. As a result these modules will not be used, and are therefore ignored.

They will, however, be addressed in the B-Spline section.

To extract data from the ACSYNT geometry databases, several of the ACSYNT
database utilities were accessed from the modules called by cl_swop. Again, we will
mix the C-code of the module with calls to the utility subroutines which are written in
FORTRAN. Pointers must be used to pass data from a C function to a FORTRAN
subroutine. This means names of arrays, which are pointers to a location in memory,
need no special consideration, but reals and integers need their addresses passed to the
subroutine instead of their values, Take for example the utility function used to get a

component list from the ACSYNT geometry database:

(void) gtgmpk(&ncomps, comps);

where ncomps is defined as an integer and comps as an array of integers. The
ampersand preceding ncomps represents the address of the variable in C code. The
(void) in front of the subroutine name is necessary when calling FORTRAN functions

from a module written in C.

The ACSYNT module written to send data to the integration server because of a buffer
request from another client is called respond_to_request. This module uses several
geometry database utility functions from ACSYNT to construct a data representation of
the current model. Before sending data, the header is built such that size_in_bytes
contains the number of components in the current model. The major and minor

opcodes are 2 and 1, respectively, which direct the data received by the server to the

Distributed Integration Solution Prototype 99

transfer function which will handle it. By paging forward to Table 6, the opcodes can
be used to locate the module at the server which will handle data transfer. The data are
sent to the server component by component. Data transmitted includes component
name, component number, color, number of cross-sections, number of points per cross-
section, and finally a list of points. The transfer function located at the integration
server which corresponds to the ACSYNT client application must receive the data in

the exact order they were sent.

The module used by ACSYNT to compile an attribute list is called give_attrib_list. It
too uses utilities for accessing the geometry data structure. In fact it makes use of the
subroutine used in the above example to get a current list of the components in the
current model. The header is built such that the size_in_bytes contains the number of
components in the list. The major and minor opcodes are 2 and 3, respectively, which
guide the signal received by the server to the module which will handle the relay of the
attribute list to the requesting client. Again, using Table 6, the function at the

integration server which will treat this data is easily located.

The module which will react to the request for data based on the choice of an element
from ACSYNT's attribute list is called respond_attrib_list. The list item is identified
by a number which corresponds to the component number in ACSYNT's geometry data
structure. The data representing the component are extracted from the data structure
and sent to the same transfer function at the server as were the buffer data. This is
because the form of the data is identical. The only difference is that a buffer data
request sends several components worth of data, while the data of only one component

will be sent for the response to the attribute list choice request.

Distributed Integration Solution Prototype 100

In order to place these modules in the proper location with respect to the opcode tables,
the major and minor opcodes to which they will respond must be defined. The major
opcode is already specified with respect to purpose (see Chapter 4.3). Since all of the
modules described for the ACSYNT client application are used to respond to requests,
they are of major opcode category 3 - Response. The only factor left to resolve is the
minor opcode. There is really no methodology for choosing the minor opcode, except
that it could be used to denote a transaction level. A transaction level could be thought
of as a request/response sequence. This sequence is illustrated in Figure 20. Note that

the flow of the sequence is from left to right.

As can be seen from the figure, when a client requests data, the request is relayed
through the server to the responding client. When the responding client sends data in
fulfillment of the request, the data goes first to the server, then finally to the requesting
client. All major opcodes for this sequence are pre-defined according to what the data
does, but the minor opcode should be the same (or mostly the same) for all members of
the transaction. Table 4 shows the opcode values for the modules described in this

section, as well as the modules which are used for initialization.

When the client application has been compiled and linked to form an executable, in this
case called acsynt, the last step is to create a UNIX script which will start the GRIM
{grim2) as a background process, sleep for about three seconds, then invoke the client

application,

Distributed Integration Solution Prototype 101

CLIENT

REQUEST REQUEST

RESPONSE

RELAY REQUEST

F—

TRANSFER RESPONSE

INTEGRATION
SERVER

Figure 20: Request/response sequence,

Distributed Integration Solution Prototype

CLIENT

102

Table 4: The ACSYNT client application opcode table,

major opcode major opcode major opcode major opcode rmajor opcode
0 1 2 3 4

minor opcode

0 send_name update_widget
minor opcode respond_

1 to_request
minor opcode

2 get_cl_list
minor opcode

3 give_attrib_list
minor opcode respond_attrib

4 list

Distributed Integration Solution Prototype

103

7.2 B-Spline Client Application

The B-Spline client application was created by modifying the main module to include
the same pathname definition used with the B-Spline's GRIM widget. The socket
filename used is s.grimsock and the pathname is the path location of the socket file (in
this case /u/michele/grim/execs/s.grimsock). The source code of the B-Spline Toolkit
was then modified such that the main module was now declared as a sub-function. In
addition, common data were declared between the client interface and the B-Spline
Module. The data common to the two is a data structure called MODEL, which
contains all the data necessary for the display of the B_Spline model. Figure 21 shows
the declaration of the MODEL data structure. Note that MODEL contains a pointer to
another structure called comp_data. This structure contains data specific to a single
component. It is represented by a pointer which allows MODEL to allocate space for
one component at a time, instead of statically allocating space during initialization of

the program.

When incoming data are to be displayed by the B-Spline Toolkit, it is read into the
MODEL data structure, then displayed. It is only because the client interface has
access to the MODEL structure that data can be read directly into it. Since this data
structure is initialized in the ap_sock module as a global, it is referenced in the former
main module of the B-Spline Toolkit as an external variable. All initializations of the
MODEL variable that were previously performed by the former main module are
deleted. The other modules which need to be modified to form the B-Spline client
application are those which deal with the request and reception of data. Since the B-
Spline Module will not produce data to send to ACSYNT, no modules which are

Distributed Integration Solution Prototype 104

Model Data Structure

typedef struct {
int num_comp;
int acs_root;
int nubs_root;
int int_root;
int fillet_root;
comp_data *comp;

struct intersection_type *intlist;

/* number of components in model */
/* root structure id */

{* Non-Uniform B-Spline roat id */
/* Structure id for intersection data */

/* pointer to beginning of linked list */
/* list of intersections */
}MODEL;

Component Data Structure

typedef struct compdata_type {
int comp_number;
char comp_name{20];
int acs_id;
int nubs_id,
int *hull_id,
int fillet_id;
int open|2};
int color;
int existence;
int nu;
int nw;
int acs_ncross;
int acs_npts;
float ***acs_pts;
float ***acs_utan;
float ***acs_wtan;
int nu_knots;
int nw_knots;
float *u_knot;
float *w_knot;
float ***hull;
struct compdata_type *next;

Figure 21: B-Spline MODEL data structure.

Distributed Integration Solution Prototype

/* component number */
/* component name */
/* structure id %/

/* open flag 1 closed 0 open */
/* component color */

/* 1 exists O does not exist */

/* rendering in u */

/* rendering in w */

/* number of cross sections */
/* number of pts per xsection */
/* pointer to component pts */
/* pointer to tangents in u dir */
/* pointer to tangents in w dir */
/* number of u knots */

/* number of w knots */

{* u knot array */

/* w knot array */

/* control hull */

/* pointer to next component */
}comp_data;

105

responsive to model data requests are necessary. The modules which need modification

include:

- The module which will request an element from the attribute list of another
client (remember this could be considered generic if the stipulation is made that
integers are used to identify list items).

- The module which relays the attribute list from the responding client to the
GRIM widget for display (also possibly generic).

- The module which receives buffer data requested from another client.

- The module which receives attribute data requested from another client.

In most cases the module which receives buffer data will also handle the attribute data.
This is because the transfer function at the integration server is cognizant of the data
structure of the receiving client and gears the sending of transfer data to that structure.
It is possible, however, that a special case exists, In the case of the base structure
charts for the client application, both types of data are thought to be handled by the

receive_buffer module.

The two modules mentioned above which deal with aspects of relaying the attribute list
can be generalized; thus, the modules in the Integration Toolkit need no modification.
This is because the stipulation is made that attribute lists consist of text strings and the
item identifiers passed during a request based on the attribute list are integers. This is
the case in the client applications used in the prototype system. The module used to
relay the request for an attribute list is called req_attribute_list. It sends a header to
the integration server with major and minor opcodes of 1 and 3, respectively. Again,
refer to Table 6. The module which accepts the list of attributes in the form of text
strings and passes them on to the GRIM is called relay_attrib_list. This module builds

a header with a major and minor opcode of 2 and 3 which is sent with the data to the

Distributed Integration Solution Prototype 106

GRIM (see Table 1). The module which sends the identifying list item, in the form of
an integer identifier, is called req_from_attrib_list. This function builds a header
with major and minor opcodes of 1 and 4, respectively, and sends it to the server.
Remember, a major opcode of 1 is defined for requests, while 2 is for buffer updates or

transfers.

The only module left to be modified is the one which receives data from the transfer
function at the integration server. This module is called receive_buffer and its first
task is to clear out the existing MODEL structure (current data model). Next,
initialization of the several elements of the MODEL data is performed and the number
of components contained in the incoming data is read. For each component, the
component name, number, color, number of cross-section, number of points per cross-
section, and a list of points is read. Note that this read order must be respected by the
order data is sent from the integration server. After all data are read from the
integration server, the MODEL structure is passed to a function which computes the

hermite tangents for the surfaces. The model is then ready for display.

Table 5 defines the major and minor opcodes as defined in cl_swop. These opcodes
enable the B-Spline client application's event handler to locate the proper module to

handle the signal data.

When the client application has been compiled and linked to form an executable, in this
case called acsnubs, the last step is to create a UNIX script which will start the GRIM
(grimmy) as a background process, sleep for about three seconds, then invoke the client

application.

Distribused Integration Solution Prototype 107

Table 5: The B-Spline client application opcode table.

major opcode major opcode major opcode major opcode major opcode
¢ 1 2 3 4

minor opcade

0 send_mame update_widget
minor opcode relay data

1 _request rev_acaynt
minor opcode

2 get_cl_list
minor opcode relay_attrib

3 req_attrib_list _list
minor opcode req_from_

4 attrib_list

Distributed Integration Solution Prototype

108

7.3 The Prototype Integration Server

The only modules which need to be modified or created are those which handle the
signal data incoming from the integration clients in the system. In other words,
modules called from the resolve_header function (the function which directs signal
data to a certain module based on opcodes contained in the signal header)., Of the
modules called by resolve_header, several are generic and do not need modification.
The ones that are application specific, however, do need to be modified or even added.
Such modules include transfer functions which receive input data from one client in the
system (ACSYNT) and transform or modify it to send to another (B-Spline Toolkit).
In the design of a transfer function, it is necessary to know the order of the input data
so that it can be read off of the socket. It is also necessary to know the method in
which the receiving client expects to read sent from the transfer function. Given these
two constraints, the transfer function then defines a method to either transform or

translate the incoming data into output.

The transfer function which the integration server uses to transfer data from ACSYNT
to the B-Spline Toolkit is called acsynt_to_bspline. This module receives the data sent
by ACSYNT in the order they were sent out. It also builds a header to send to the
receiving client in which the size_in_bytes contains the number of components to
expect and the major and minor opcodes are 2 and 1, respectively. These opcodes
correspond to the position of the receive_buffer module of the B-Spline client
application in Table 5. The data received from ACSYNT are evaluated and the points
in each cross-section are reordered to be consistent with the representation used in the
B-Spline Module. The data are then transmitted to the receiving client (B-Spline

Toolkit) in the order it expects to read the data from the receiving socket.

Distributed Integration Solution Prototype 109

There are two other modules which may need modification. One relays the attribute
list compiled by one client to another which will display it. The other relays the
attribute list item which is being sent back to the client who owns the attribute list for
data which correspond to the item. Both of these modules can be considered generic if,
as mentioned before, the attribute list is limited to text and the item returned is an
integer. For the purposes of this prototype this constraint is valid and the modules are
considered general. For the sake of understanding data flow in the system, the module
which requests the attribute list from ACSYNT, request_attrib_list, builds a header of
maj_opcode 3, min_opcode 3. From Table 4, it is seen that give_attrib_list will
respond. As was explained previously, give_attrib_list compiles a list and sends it
along with a header of major and minor opcode 2, 3. This corresponds to

relay attrib_list_s in Table 6. This module passes on the list data to the B-Spline
client also with a header of 2, 3. Referring back to Table 5, we see that the opcode
sequence locates relay_attrib_list at the B-Spline client application. The B-Spline
module keeps the same header definitions (major 2, minor 3) and transmits header and
list data to its GRIM widget. Using Table 1, we see that the header corresponds to

g _make_attrib_list, which will read in the list data and display them to the user.
Table 6 shows how the opcodes contained in the header structure of data incoming to

the integration server are directed to the module which will handle the signal.

By studying the headers defined by each module contained in Tables 1,4,5 and 6, the
flow of data in the system can be traced. These are the tables contained in the opcode
table portion of the Integration Toolkit. For integration system designers who want to
add new modules to the integrated system, a table of opcodes for each client application
and the server is a graphical aid when defining new headers and locating modules.

Distributed Integration Solution Prototype 110

Conceptually the integration server should be able to handle any number of client
applications. However, in the prototype coded for this research, a limit of 50 clients
was set because of the array sizes in the socket data structure. Linked lists would
eradicate this limitation, but for the purpose of this research, arrays were faster to code
and to execute. Code specific to the integration server portion of this prototype
integrated system has been delivered to the research sponsor, though some of the
application-specific code produced for the prototype appears as examples in the m-specs
contained in Appendices C, D, and E.

11In i
Once the integration client and server have been created, the system is ready for
implementation. The server is started as a background process running on the IBM
RISC System/6000 Model 530. The server can be run continuously if desired. The
clients can then be started at any time. If the server is not available and a client is
started, an error will result. The B-Spline client application can be run on either the
IBM RISC System/6000 Model 530 or Model 520. ACSYNT is also available on both
of these platforms. These machines are connected by a local area network using
TCP/IP and Ethernet. For the sake of an example, let us consider the scenario where
the server is running as a background process on the Model 530, the B-Spline client
application is on the Model 520, and the ACSYNT client application on the SGI
4D/80GT. This configuration is shown in Figure 22.

The ACSYNT client application is started using the racsynt exec which can be found in
Appendix F. The resulting client is shown in Figure 23. At this time, the ACSYNT

Distributed Integration Solution Prototype 111

Table 6: Integration server prototype opcode table.

major opcode major opcode major opcode major opcode major opcode
0 1 2 3 4

minor opcode

0 put_cl
minor opcode acsynl_to

1 det_list request_data _bspline
minor opcode

2
minor opcode request_ relay_attrib

3 attrib_list list_s
minor opcode request_from

4 _attrib_list

Distributed Integration Solution Prototype

112

IBM RISC
System/6000
Model 530

B B-Spline
! Module

IBM RISC Silicon Graphics
System/6000 4D/80GT
Model 520

Figure 22: Prototype client applications and integration server.

Distributed Integration Solution Prototype 113

L R S

Figure 23: The ACSYNT client application.

Distributed Integration Solution Prototype

P A LR

114

client application is connected to both its dedicated GRIM widget and the server. The
client application has sent its name to the GRIM for display above the selection list, as
seen in Figure 23, and has sent a request to the integration server for a list of exchange
clients. No data will be returned by the server in fulfillment of this request since there
are no other applications currently connected to the integration server, and because
there are no sender/receiver relationships listed in the server's exchange structure
where ACSYNT is a receiver. Therefore the selection list remains empty. A user can
now proceed to use the client application as if it were a stand-alone program (not
connected to the integrated system). A conceptual-level model of a General Dynamics

F-14 fighter jet is created and displayed.

The B-Spline client application is started using the racs script described earlier. This
exec can be found in Appendix F. The dedicated GRIM starts, a few seconds pass,
then the B-Spline application client appears. The client application connects to the
GRIM and soon thereafter sends its name as the response to a request. The name is
displayed in the GRIM widget above the selection list. The client also connects to the
integration server, and requests a list of exchange clients. The server responds with the
names of clients currently connected from which the B-Spline client application can
request data. This name, ACSYNT, is placed in the widget's selection list as shown in
Figure 24. Note that the B-Spline option is not included in the selection list of the
ACSYNT application since the inverse data exchange was not defined in the exchange
relations file. In other words, there is no provision for data passed from the B-Spline
Module to be sent to ACSYNT; thereby obviating the need for a user at ACSYNT to
request data from the B-Spline Module.

Distributed Integration Solution Prototype 115

NERER

e G oo i 0 0y
LM iR o
VR RN By T

Figure 24: The B-Spline client application prototype.

Distributed Integration Solution Protosype 116

The B-Spline client application is now ready to request data from ACSYNT. If the
current model displayed by ACSYNT (F-14) is desired, the following sequence of
widget manipulations must occur. The first toggle button in the widget, request buffer
data from client, is depressed, "ACSYNT" is chosen from the selection list, and the
activate exchange toggle is selected. The activate exchange toggle will display a panel
with the name of the sending application and wait for the user to select one of two
buttons for further action. If the OK button is chosen, the data exchange takes place.
If the CANCEL button is selected, the exchange is abandoned.

Alternatively, the B-Spline client could request a single component from ACSYNT.

To do this, the client attribute listing toggle is depressed and the "TACSYNT" client
name is chosen from the selection list. ACSYNT responds by supplying a list of data
attributes, which are displayed by the B-Spline client application's widget. The user
then has the option of choosing one of the items from the list and then selecting the OK
button to send the data request. If the user is not interested in the list items he can use
the CANCEL button to exit the attribute list without further action. The client attribute
list of a client in the integrated system is dynamic since it often depends on information
about the current model being displayed. For example, in the ACSYNT client
application, the attribute list consists of components of the current aircraft model.
Since not every model contains the same components, the list is model dependent and

must be re-created each time it is requested by another client in the system.

The Figure 25 shows an example where the B-Spline and ACSYNT clients were
executed on the same workstation. This is intended to show how the clients appear
after the B-Spline client has requested the wing component data from the ACSYNT
client's current model.

Distributed Integration Solution Prototype 117

Figure 25: B-Spline and ACSYNT clients running on the same workstation,

Distributed Integration Solwtion Prototype

118

8.0 CONCLUSIONS

The prototype integration system has proven that it is feasible to implement the
distributed integration solution. The prototype was effective in demonstrating the
transfer of data among CAD/CAM applications residing in a network environment on
remote and local platforms. A user at an application connected to the integration server
can request the current model data from a second application connected to the server.
The user also has the option of requesting some component of that data in lieu of the
entire model, Once the model data have been transferred to the requesting application,
the model can be modified and manipulated since it now belongs to the application
which imported it. It is worth mentioning that a third CAD application was added to
the prototype integration system with minimal effort. The application is a GL-based
surface modeler called SURF. The modeler was developed at this laboratory and uses
a data structure similar to that of the model used in the B-Spline Toolkit. Because of
this similarity, the transfer function at the integration server which transforms hermite
surface representations into nonuniform B-Spline surfaces was utilized to send data to
the new application. A client interface for SURF was constructed following the
structure charts and module specifications contained in the Integration Toolkit. The
reusability of modules, in this case the transfer function, and the presence of CASE
tools significantly reduced the amount of time necessary to integrate a new application

into the integrated system.

The prototype integration system was used to test the validity of the tools used to
generate an integration system and the effectiveness of the distributed integration
solution. As a direct result of the research described in this document, five objectives
were achieved :

Conclusions 119

1) Creation of a communication protocol for data passing in the context of an
integration system.

2) Addition to the components of an Integration Toolkit which is part of the
CAD/CAM CASE Workbench.

3) Creation of a distributed integration solution which is implemented in the
Integration Toolkit.

4) Development of tools in the form of data flow diagrams, process specifications,
data dictionary, structure charts, and module specifications to aid an integration
system designer in generating an integration system based on the distributed
integration solution.

5) Demonstration of the validity of the distributed integration solution by a
prototype system which was effected using two CAD applications.

These five items are a product of the research objectives presented in the introduction of
this dissertation. Explanation of each objective appears in the order presented at the
beginning of the document. First, the socket-based communication protocol used in the
integration system stemmed from an investigation of mechanisms used for interclient
communication. Second, the distributed integration solution was created such that it
includes a core element, the integration server, which manages the exchange of data and
information between integrated applications. Tools were developed to aid in the
generation of integration systems based on the distributed integration solution. And
finally, a prototype integrated system was implemented using the distributed integration

solution as a basis for integrating two CAD applications.

Conclusions 120

In addition to the objectives stated above, requirements for the distributed integration
solution were also specified. These objectives will be described one at a time in order
to clarify them. The first objective was database access and storage of pertinent
CAD/CAM data. Note that although a database was not included in the prototype
integrated system, it was originally described as an optional member of the system.
The database would essentially be another client in the integration system, connecting
to the integration server and sending and receiving data through it. The second
objective specified inter-application communication. Inter-application communications
are complex in that they rely on several components in the integration system (such as
the GRIM, the AP/SOCK Interface, and the integration server) for implementation.
Thirdly, a goal of the distributed integration solution was to enable applications to run
in a distributed and simultaneous environment. The applications described in this
research are usually interactive in nature and are able to execute in a network
environment in a concurrent fashion. A fourth specification was functional access of
other applications in the integrated environment without terminating the session of the
current application. This is made possible by the use of asynchronous sockets for
communication. Asynchronous sockets allow the CAD/CAM application to proceed as
usual until the occurrence of a signal. When a signal does appear, the application is
suspended, not terminated, until the data can be taken from the socket and resolved.
The fifth objective was for transfer of data among applications. This is accomplished
by allowing the user to specify data exchange transactions using a widget interface
(GRIM) which belongs to the client that will receive the data. All data exchanges are
request oriented. Last of all, there was a specification for a system executive which
oversees and manages interclient and database interactions. In the distributed
integration solution, this system executive is called the integration server. All of the
intended goals have been met by the distributed integration solution.

Conclusions 121

There are a few more advantages of the distributed integration solution which are worth
mentioning. First of all, it allows the system integration designer to exploit the
capabilities of different applications instead of locking him into a procedure for data
extraction and exchange. Using the geometry database utility functions of ACSYNT to
extract data is a good example of this. It can handle the integration of CAD
applications whose source code may or may not be available. Clients connecting to or
disconnecting from the integration server do not adversely affect the system as a whole.
It enables the system integration designer to choose from three types of integration
schemes. It is valid in a network environment for n clients. And finally, the use of the
Integration Toolkit greatly facilitates the task of the integration system designer by

giving him graphical guidelines to follow.

L

Conclusions 122

REFERENCES

[Brau85] Brauner, K. and Bnggs, D Illej.emmi_umﬁ.gtﬂud_ﬂm_cqmmnm_qn

revision B Jan 1985

[Chri84] Christman, A.M., "Update on CAD, CAM, and CIM", I&CS - The Industrial
and Process Control Magazine, vol. 57, no. 5, May 1984, pp.53-57.

[Colt91] Colton, J.S. and Dascanio, J.L., "An Integrated, Intelligent Design
Environment”, Engineering with Computers, vol. 7, no. 5, winter 1991, pp.11-22.

[Come91] Comer, D.E., Internetworking with TCP/IP - Volume I, Prentice Hall,
Englewood Cliffs, New Jersey, copyright 1991.

[Date90] Date, C.J., An Introduction to Database Systems, Volume I, Addison-Wesley
Publishing Company, copyright 1990.

[Enca%0] Encarnacao, J.L. and Lockemann, P.C., Engineering Databases; Connecting
Islands of Automation Through Databases, Springer-Verlag, copyright 1990.

[Fari90] Farish, M., "Splendid Isolation", Engineering, vol. 230, no. 8, Sept. 1990,
pp.20-22.

[Fenv90] Fenves, S., Flemming U., Hendrickson, C., Maher, M. and Schmitt, G.,
"Integrated Software Environment for Building Design and Construction”, CAD,
vol. 22, no. 1, Jan/Feb 1990, pp.27-36.

[Furl90] Furliani, C., Wellington, J. and Kemmerer, S., Status of PDES-Related

Ag_nun;s_(s_tag_duds_md_qs_ung) National PDES Testbed Report Series, U.S.
Department of Commerce, October 1990.

[Guti89] Gutin, R.H., "Gral: An Extensible Relational Database System for Geometric
Applications", Proceedings of the Fifteenth International Conference on Very Large
Data Bases, Amsterdam 1989, pp.33-44.

(IBM90] IBM Communications Programming Concepts - AIX Version 3 for RISC
System/6000, First Edition (March 1990), copyright International Business
Machines Corporation, publication #5C23-2206-00.

References 123

[Jaya90] Jayaram, S. and Myklebust, A., "Automatic Generation of Geometry
Interfaces Between Applications Programs and CADCAM Systems", CAD, vol. 22,
no. 1, Jan/Feb 1990, pp.50-56.

[John91] Johnson, E.F. and Reichard, K., Power Programming ... MOTIF,

Management Information Source, Inc., copyright 1991.

[Kim84] Kim, W., Lorie, R., McNabb, D. and Plouffe, W., "A Transaction
Mechanism for Engineering Design Databases", Proceedings of the Tenth
International Conference on Very Large Data Bases, Singapore 1984, pp.355-362.

[Liew82] Liewald, M.H. and Kennicott, P.R., "Intersystem Data Transfer via IGES",
IEEE Computer Graphics & Applications, May 1982.

[Lu86] Lu, L., Myklebust, A. and War, S., "Integration of a Helicopter Sizing Code
with a Computer-Aided Design System", Journal of the American Helicopter
Society, Oct 1987, pp.16-27.

[Mars86] Marshall, J. and Van Dyne, D., "Integrating CAE, CAD, and CASE",
Digital Design, vol. 57, no. 6, June 1986, pp.40-46.

[Mccl89] McClure, C., CASE is Software Automation, Prentice Hall, Englewood
Cliffs, New Jersey, copyright 1989.

[Meye91] Meyers, S., "Difficulties in Integrating Multiview Development Systems",
IEEE Sofiware, vol. 8, no. 1, Jan 1991, pp.49-57.

[Mykl90-1] Myklebust, A. and Pennington, S.L., A Research Report to the IBM
Corporation, July 1990.

[Myk190-2] Myklebust, A. and Pennington, S.L., A Research Report {0 the IBM
Corporation, Dec 1990.

[Pall91] Pallatto, J. "IBM to Erect Vast Database Warehouse", PC Week, vol. 8, no.
31, Aug 5, 1991, pp.1 & 8.

[Nye90] Nye, A. (editor), X Protocol Reference Manual, vol. 0, O'Reilly and
Associates, Inc., Sebastopol, California, copyright 1990,

[Page88] Page-Jones, M. A Practical Guide to Structured System Design, Yourdon
Press, Prentice Hall Building, Englewood Cliffs, New Jersey, copyright 1988.

References 124

[Penn91] Pennington, S.L., A Software Engineering Approach to the Integration of

CAD/CAM Systems, Doctoral Dissertation, Virginia Polytechnic Institute and State

University, March 1991.

[Smit90] Smith, D. and Oman, P.W., "CASE Analysis and Design Tools", IEEE
Software, vol. 7, no. 3, May 1990, pp.15-19.

[Oman90] Oman, P.W., "CASE Analysis and Design Tool", IEEE Software, vol. 7,
no. 3, May 1990, pp.37-43.

[Reis90] Reiss, S.P., "Connecting Tools Using Message Passing in the Field
Environment", IEEE Software, vol. 7, no. 4, July 1990, pp.57-63.

[Rowe88] Rowell, L.F., Schwing, J.L. and Jones, K.H., "Software Tools for the
Integration and Execution of Multidisciplinary Analysis Programs”,
AIAA/AHS/ASEE Aircraft Design, Systems and Operations Meeting, Atlanta,
Georgia, Sept 1988 (AIAA-88-4448),

[Your89] Yourdon, E. Modern Structured Analysis, Yourdon Press, Prentice Hall
Building, Englewood Cliffs, New Jersey, copyright 1989.

References

125

Appendix A

: DATA DI

A

126

application_in_data (data flow) =
[request_application_info
I new_buffer_data
1.
* The data is split into requests for the application
and new information for the application to display. *

application_out_data (data flow) =
[response_app_out
| request_app_out
1

* The output from the application will be either in the
form of actual information (such as name, buffer data, etc)
or request data. *

attribute_list_choice (data flow) =
responder
+ list_item .
* The responder’s name is necessary to allow the integration
server to determine to which of the processes connected
to the server is the responding application. The header
is used 1o instruct the receiving process on how to
evaluate the data which follows. The list item is
the item number from the attribute list which was
supplied by the responding application in a preceeding
request/response sequence. *

callback {data flow) =
[request_buffer_callback
I request_atiribute_list_callback
| request_attribute_item_callback
1.
* Defines the actions based on the event generated
at the widget interface by the user.*

choice_data (data flow) =

[buffer_data

+ application_name
]
| [attribute_list

+ application_name

]
I [item_from_attribute_list

1.
* The user can perform one of three actions at the
widget: a request for buffer data from a named
application, a request for the attribule list of
a named client, or the choice of an element from
a previously requested attribute list. These three request
choices correspond to the three [choices] above *

Appendix A

127

client_in_data (data flow) =
[widget_in_data
| application_in_data
1. '
* These are the standard data items sent by the server to
clients in the integrated system. *

client_out_data (data flow) =
[widget_request_forward_server
I response_app_out
| initialize_client
1.
* The widget_request_forward_server is data sent from
the widget to the client for transmission (relay) 10
the server. Response_app_out contains actual information
from the application itself (such as buffer data, altribute
list, etc). Initialize_client is performed only once
at setup of the client. *

common_buffer (store) =

[application_name

| auribute_list

| artribute_data

| buffer_data
1.
*The attribute list is given to a requesting client. With
it the requester can choose a component of the current
model being displayed, instead of requesting the entire
model. Attribute data is generated in response o a request
resulting from use of the attribute list. The buffer data
is the current model. *

connection_info (data flow) =
[connection_request
I socket_closed

1.
* There are two types of data that affect the GRIM widget's
socket with its client. The first is a connection request
which establishes the socket, and the second alerts the
widget that the client is no longer available for

communication. *

connection_request (data flow) =
*a request sent by client to server for socket-based
communications*

data_for_application (data flow) =

new_buffer_data .
* The application gets information for the current model

Appendix A

128

from the common data store and displays it in the
current buffer. *

data_for_clientl (data flow) =
header
+ client_in_data .
* These are the standard data items sent by the server
to clients in the integration system. *

data_for_clien(2 (data flow) =
header
+ client_in_data .

* These are the standard data items sent by the server to

clients in the inlegration sysiem. *

data_for_widget (data flow) =
header
+w_data .
*data_for_widget is in one of two forms, a request
for connection with the GRIM widget from a client,
or data from the client which will be displayed
in the widget for selection by the user *

data_from_application (data flow) =
[application_name
| attribute_list
| attribute_data
| buffer_data
1.
* Information accessible from the application.
This includes a list of data stiributes that other
clients can request, data from the application which
corresponds to items in the attribute list, or data
which describes the current buffer being displayed. *

data_from_client1 (data flow) =
header
+ client_out_data .
¥ client_out_data includes all data sent from the
client, including requests for data and connection,
as well as responses to requests from another client. *

data_from_client2 (data flow) =
header
+ client_out_data .
* client_out_data includes all data sent from the client
- including requests for data and connection, as well
as responses to requests from another client, *

data_to_application (data flow) =

Appendix A

129

[x-formed_buffer_data

| x_formed_attribute_data
1.
* This is data which has been changed in format and sent to
the application Data of this form is data requested from a
a client in the system and data requested from an attribute
list of a client in the system. *

decision_data (data flow) =
[request_current_buffer
+ application_name
+ activate_exchange
]
| [request_attribute_list
+ application_name
]
| attribute_list_choice .
* There are three actions the user may perform:
Request the current buffer from application 2 (as named in
application name), request a list of data attributes
from application 2 (again, as named in application name),
and request data based on a choice from the attribute
list supplied by application 2 (again, again, as named in
application name), *

event (data flow) =
[request_buffer event
I request_attribute_list_event
| request_attribute_item_event
1.
* These define possible user actions *

header (data flow) =
size_in_bytes
+ maj_opcode
+ min_opcode .
* The header is the first chunk of information read
from the socket by the receiving process. Using the
size_in_bytes the process can expect how much data
will follow. The major and minor opcodes are used
by the receiving process to “handle” the incoming data. *

initialize_client (data flow) =
[connection_request
i request_for_xchg_app_list
1.
* These are requests used to set up the client who has
requested a connection with the server, *

list_choice (store) =

Appendix A

130

current_list_item ,
* Denotes the list item chosen from the client attribute list. *

list_update_info (data flow) =
add_or_delets
+ list_name ,
* Based on add_or_delete the list name which follows will
be put in the exchange_list of the widget, or taken out. *

new_buffer_data (data flow) =
[x-formed_buffer_data
I x-formed_attribute_data
1.
* This is the data which will revise the model displayed
in the application which receives it into its common
data area, *

relay_data (data flow) =
attribute_list ,
* This is the attribute list of application client. It
does not need to be transformed in any way, merely relayed
by the server to the client which requested this data. *

request_app_out (data flow) =
[connection_request
I request_for_xchg_app_list
| request_buffer
| request_atiribuie_list
I request_attribute_data
1.
* Characterizes the types of requests the client will
send to the server, *

request_application_info (data flow) =
[application_name_request
| buffer_data_request
| attribute_list_request
| attribute_data_request

1.
* These requests apply only to the state of the application.*

request_attribute_item_callback (data flow) =
attribute_list_callback
+ attrib_list_item_callback
+ ok_callback .

* The callback which will request an item from an attribute list

is a combination of the request for the list, a list item,
and then an ok... to go ahead with the request. The
sequence used to invoke the callback is attribute list

toggle callback function, followed by an item from the list

Appendix A

131

generated, then an OK button callback function to acknowkledge
choice *

request_attribute_item_event (data flow) =
attribute_list_choice

request_attribute_list_callback (data flow) =
attribute_callback
+ list_callback .
* This request is a combination of a choice for the attribute
list and the name (from list) of the responding application.
Tha attribute callback corresponds to a request for the
attribute list, and the list callback corresponds to the
an application name from the selection list being chosen. *

request_attribute_list_event (data flow) =
request_attribute_list
+ responder .
* This event is generated after a series of actions. Order
is important. *

request_attribute_list_from_application2 (data flow) =
header
+ responder .
* The responder name is necessary 1o allow the server to
determine the socket location of the application
responiding to the request. 'The header is used to
instruct the receiving process how to evaluate the
data that follows. *

request_buffer_caliback (data flow) =
receive_callback
+ list_callback
+ activate_callback
+ active_ok_callback .
* This request consists of a receive data choice followed
by a choice of application from list. In order to effect
the request, the activate choice is necessary followed
by an ok,
The receive callback is triggered by a toggle, the list
callback by selection of an application name, the activate
callback by a toggle and the ok button by a pushbutton
caliback. *

request_buffer_event (data flow) =
request_current_buffer
+ responder
+ activate_exchange .
* This event occurs due o a sequence of actions on the
part of the user. Order is important. *

Appendix A

132

request_buffer_from_application2 (data flow) =
header
+ responder .
* The responder name is necessary for the server
to determine on which socket the responding application
is connected. The header will allow the client to
receive the signal from the GRIM widget and evaluate

it properly. *

request_conn_client_name (data flow) =
*request from the GRIM widget to the client application
for his identifying name.*

respond_to_attribute_list_choice (data flow) =
header
+ attribute_list_choice .
* This is actually a request based on the choice of
an element of the attribute list supplied by another
client. *

responder (data flow) =
application_name .
* name of the application which will respond to a given
request.*

responding_application_name (store) =
responder .
* Contains the name of the application who will respond to
the request generated by the user. *

response_app._out (data flow) =
{ server_destined
I transfer_data
| relay_data
1.
* Server destined data is the name of the client application,
while transform data is data from the client application
that must be changed into a format which is compatible
with the client that requested that data from the
sending application. Relay data is data that does not
nezd to be transformed, merely needs a new header added
to its message. *

server_destined (data flow) =
[application_name
| close_sock

1.
* The name of client applicatio or the client socket

which has just recently been closed to communication, *

Appendix A

133

socket_data_structure (slore) =
socket_descriptor
+ client_name .
* This information is stored for each client connected
(o a server. It allows the socket descriptor to be
cross-referenced by client name. *

transfer_data (data flow) =
[buffer_data
| attribute_data
1.
* Both of these types of data need to be changed from the
format sent by client application 1 into that of the
requesting client application (application 2). *

w_data (data flow) =

{ connection_info
| widget_display_data

1.
% w_data is in on of two forms, a request for connection
with the GRIM widget from the owning application, or
data from the client application which will be displayed
in the widget for selection by the user, *

widget_action (data flow) =
header
+ widget_request .
* Based on choices the user makes at the GRIM widget
interface, the widget sends requests for either
the current buffer (geometric data, text, graphs, etc)
from application 2, a list of attributes that
application 2 can supply, or the actual transaction
item from the attribute list. The client name request
is generated by the widget when a new socket connection
is opened. *

widget_display_data (data flow) =
[owning_application_name
| exchange_application_list
| attribute_list
I tist_update_info
1.
¥ widget_displayed_data can be the name of the client
who owns the GRIM widget (displayed above the selection
list in the widget), a list of applications with whom the
GRIM'’s owner can request data (displayed in the selection
list), or a list of attributes sent from an application
with whom the GRIM's owner can request data. The attribute

list is used to request specific pieces of data (as

Appendix A

134

defined by the application who will supply them), *

widget_in_data (data flow) =
[list_of_exchange_applicalions
| attribute_list
|list_update
1.

widget_out_data (data flow) =
[connection_request
| client_name
{ exchange_application_list
| attribute_list
Ilist_update_info
1.
* The application that will own the GRIM widget, sends out
a connection request ONE TIME to establish a communication
link. The widget needs the remaining four pieces of
information to display choices on the widget for the
user. *

widget_request (data flow) =
[widget_request_forward_server
| widget_request_client_info
1.
* Some of the data passed to the client by the server is
meant to be forwarded on to the server. Other data are
to be supplied by the client itself. *

widget_request_client_info (data flow) =
request_client_app_name .
* At the present time this is the only information the
widget needs from the client application. *

widget_request_forward_server (data flow) =
[request_buffer_from_application_named
| request_attribute_list_from_application_named
| attribute_list_choice
1.
* Requests for buffer and attribute list must be accompanied
by the name of the responding application, while attribute
list choice knows which application responds because of
the preceeding request for the attribute list. The
application named in the request for buffer and
attribute list is also known as the responder. *

Appendix A 135

Appendix B

WD

136

This appendix contains a description of each data flow diagram followed by the data
flow diagrams and process specifications themselves. It is important to remember that
the data entities used in the data flow diagrams are often not found in the structure
charts of the components they represent. This is because there are data in the
integration system which have no way of being named. What this means is that often,
requests for data are determined simply by the major and minor operation codes
contained in the message header, and the reponse to the request is initiated immediately
upon resolution of the opcodes. In view of the fact that request data may not be
explicitly defined in terms of variable names, the data flow diagrams represent requests
in conceptual terms; in other words, a name is given to request data that does not
translate to the component structure charts. This process of giving names to data which
do not explicitly appear elsewhere is what is meant by the term "conceptual data”. The
purpose of using conceptual data is to describe the types of messages being passed in
the integration system. Messages in the system all are preceded by a header block
which is used by the receiving process to locate the module in the event handler which
will receive any further data, or will produce data as a direct consequence of the

header. Please note that italicized variables indicate data flows.

Context Diagram

The first diagram created is called the context diagram. The context diagram is defined
as the top-level of a hierarchical set of data flow diagrams. It represents the entire
system in terms of a single process, shown as bubble 0. The diagram is used to
delineate the scope of the analysis and define the system in terms of its inputs and

outputs. The context diagram, in conjunction with the data flow diagrams derived from

Appendix B 137

it, enables the integration system designer to identify the major transactions of a system

in terms of inputs and outputs.

The context diagram of the distributed integration solution shows three data terminators
labeled application 1, application 2, and user. It is important to mention here that only
two applications have been used in these diagrams in order to simplify the data model.
However, the rules developed for two applications can be extended to cover n

applications.

As shown, each application has data it can send to and receive from the integrated
system. The data_from_application is defined as the application's name, a list of data
attributes (often called the Client Attribute List (CAL)) that other clients can request,
data corresponding to those attributes, and data representing the current buffer. The
data_to_application can be either buffer data that were requested from a client in the
system, or attribute data (data supplied in response to a choice from the attribute list)
from a client in the integrated system. Note here that it is possible that an application
could send data to the integration server to be transformed in some manner and then
sent back. In this scenario, an application would essentially request data from itself.
This could be useful for applications whose source is not available, since a function

external to the application would appear to be part of the application.

The user of the integrated system is presented with choice_data which is defined as a
sequence of operations the user must perform. The user has the ability to request the
current buffer from an application in the system, the attribute list from an application in
the system, or data which correspond to an item selected from that attribute list. As a
result of evaluating the choice data and taking action, the user creates decision_data

Appendix B 138

which is transmitted to the integrated system. Decision data indicate that the user
wants to request buffer data from a specified application, request a list of attributes
from a specified application, or request data based on an attribute list previously

requested.

DED 0 - Integrated System

As was described in Chapter 4, the term "client" refers to a CAD application,
AP/SOCK Interface, and GRIM widget, while "application" refers only to the CAD
application itself. The term "client interface" implies the combination of the GRIM

interface and the AP/SOCK Interface.

In DFD (Data Flow Diagram) 0, we see the integration server with two client
interfaces connected. These clients interfaces correspond to applications 1 and 2,
shown in the context diagram, as they are embodied in the integrated system. Both
interfaces are identical; therefore, it suffices to only explain one of them indepth. For

this purpose we choose client interface 1.

Client interface 1 receives three inputs: dara_from_application, decision_data, and
data_for clientl. Data_for client]l consists of a header and client_in_data.
Client_in_data can be either data bound for the GRIM widget or data bound for the
application. The data output from the client interface 1 is dara_to_application,
choice_data, or data_from_client]. Data_from_client] consists of a header and
client_out_data. Client_out_data includes all data sent from the client, including
requests for data and connection, as well as responses to requests from the integration
server or another client. The integration server process shows the transition of

data_from_client] to data_for_client2 and data_from_client2 to data_for_client1.

Appendix B 139

E - Cli
The client interface data flow diagram shows the components of the client application
which enable the CAD application to interface with the user and the integration server.
These two components are the AP/SOCK interface and the GRIM widget. In the

diagram, each component is represented by its own process node.

The socket interface (AP/SOCK) is responsible for receiving data_for _client] and
determining if the data should be given to the application or to the GRIM widget.
These decisions are indicated by the data flows dara_for_application and
data_for_widget. The data pertaining to the application are placed in the common data
buffer of the socket interface and the application. This will enable access to the data
by the CAD application. The data which pertain to the GRIM widget, such as
widget_display_data or connection_info, are gathered and sent to the widget for action.
The widget will take some of that data and display it, thus producing choice_data for
the user, When the user performs an action based on the choices, he produces
decision_data which is sent back to the widget, where it may be combined with other
information to form widget_action. An action for the widget is defined as requests for
data or information generated by the user, or requests for information about the owning
client application. In the socket interface process node, either the input from the
widget or data_from_application will be used to create data_from_client1. The data
produced by the application are stored in common with the socket interface, such as
buffer data, or the CAD application's name. The data leaving the socket interface node

are all data the client can produce, including requests for data or responses to requests,

Appendix B 140

DFD 1.1 - GRIM Widget

This data flow diagram represents the component of the client which enables the user to
interface with the integrated system. Data_for_widget is evaluated to be either
widget_display_data or connection_info from the owning client application. Since the
GRIM widget is essentially a server in its design, the term client application is
warranted. Client application implies the CAD application and its system interface
(AP/SOCK) for which the GRIM supplies the user interface. Widget_display_data is
transformed into a format for presentation to the user as choice data. Connection_info
is evaluated and a request is generated which is sent to the client application. When
decision_data is generated by the user, it is transformed into an event. An event or a

request for client application name constitutes a widger_action.

FD 1.1.1 - isi
This process generates an event based on decision data received as input. Decision data
breaks down into the following: application_name, buffer_request,
activate_data_exchange; request_attribute_list, and attribute_choice. The events
generated are request_buffer_event, request_attribute_list_event, and

request_attribute_item_event.

D 1.1,2 - Determine Wi Acti
Based on an event, a callback function is activated. Callbacks are functions which
allow a widget to perform an action when prompted. The execute action process
produces widget_action from req_client_app_name or callback. Widget_action is

defined as header and widget_request.

Appendix B 141

DFD L.1.2.1-D ine Callback Functi
Based on the event (request_buffer_event, request_attribute_list_event, or

request_attribute_item_event), a callback function is activated.

DED 1.1.2.2 - Execute Action

Based on the callback function, a specific header is constructed for the data. The
header (bubble 1) is concatenated with a list item identifier and/or the responding
application name. The resulting information is request_buffer_from_application2,
requesi_antribute_list_from_application2, or the attribute_list_choice. The header

created in bubble 3 is used to request_client_app _name.

DFD 1.1.3 - Socket Interface
Data_for_widget is stripped of its header and becomes w_dara. W _daia is further

determined to be either widget_display_data or connection_info.

1 -Cr i
List_update_info tells the process whether to add or delete a selection list item. The
selection list is the one which lists clients from which data can be requested. An item
added to this list is first converted into a motif string. Other kinds of data converted
into a motif string include the owning application's name, initial members of the
selection list (shown by exchange_application_list), and attribute list items. Motif
strings are string definitions recognized by the Motif toolkit which can be displayed by

a widget,

DED 1.1.4.4 - Display in Wid
A Motif list item is evaluated as to whether it should be added to the attribute list or the

selection list. The respective lists are created or added to. The attribute list consists of
items representing choices that correspond to data attributes as defined by an

Appendix B 142

application. The selection list consists of client names. In the widget, toggle buttons
represent the ability to request buffer data or the attribute list from another client in the
integrated system. By combining the selection list choices and the toggle buttons,

choice data for the user are produced.

D - i fi

Connection information could be either the indication that an active socket has been
terminated (socket_closed) or it could be a request for connection from the owning
client application, When a socket is closed, its identifier is deleted from the list of
active sockets kept by the GRIM. This allows the GRIM to detect when its owning
application has been terminated. As a result, it terminates since the CAD application
no longer requires its services. On the other hand, when a new connection is received,
the client application's name is requested for use as displayed information in the

widget.

DED 1.1.5.3 - Accept Connection

The occurrence of a connection request creates a new socket dedicated to the client
application. This socket descriptor is stored in a socket data structure. The fact that a
new connection has been requested generates the request for the client application’s

name.

DFD R m
The new_connection triggers the construction of a header which will, in effect, request

the name of the client application which has just connected to the GRIM,

Appendix B 143

DED 1.2 - Socket Interface

The socket interface is found in the AP/SOCK which is used as an itermediary to the
integration server by the GRIM and the CAD application. In the data flow
representation of the interface, data_for_applicationl consists of a header and

client_in_data. Client_in_data is either widget_in_data or application_in_data.

Widget_in_data consists of a list of exchange clients (for incorporation in the selection
list), an attribute list, or a list update. A list update is an instruction, destined for the
widget, to add or delete a client name from the selection list. Widger_in_data or
owning_application_name comprise widget_display_data, which when orred with
connection_info, produces w_data. When a header is added to w_dara, it becomes

data_for_widget.

Application_in_data is request_application_info or new_buffer_data.
Request_application_info originated from another client in the integrated system or the
integration server. New_buffer data has been sent by a client in the integrated system
in response to a buffer data request generated by this client. Request_application_info
is application_na}ne_request, buffer_data_request, attribute_list_request, or
attribute_data_request. These requests can be filled from common_buffer. The
responses to these requests take one of three possible forms: server_destined,

transfer_data, or relay_data.

Data destined for the integration server include the application's name (for use by the
integration server when cross-referencing socket descriptors by client name) or a closed
socket signal. When a client socket is terminated, the server realizes that the client is

no longer connected to the integrated system. Transfer data are data in the format of

Appendix B 144

the responding client. These data must be either transformed or translated at the
integration server so that they can be sent to the receiving client in the integrated
system. Buffer data and attribute data are considered to be transfer data. Relay data is
the attribute list from the client which must be transferred to the requesting client in the

integrated system.

Response_app_out or request_app_out form the data flow defined as
application_out_data. Request_app_out is widget_request_forward_server or
initialize_app. Widget_request_forward_server are those requests generated by the user
at the GRIM widget which must be relayed by the integration server to another client in
the integrated system for response. These requests include
request_buffer_from_application_named,
request_attribute_list_from_application_named, or attribute_choice. Initialize_app is
either a request for connection or a request for a list of the clients to be placed in the
widget's selection list. These two requests are only generated during the start-up
phase of the integration client. When a header is added to application_out_data, it is

transformed into data_from_clientl.

Widget action is split into widget_request_forward_server and
widget_request_client_info. The latter is defined as any information the GRIM needs to
obtain from the client application about the client application. At this point the only
information of this type is the client application's name. In response to this request,

the client application sends its name as an identifier to the GRIM.

Appendix B 145

DED 1.2.1 - Evaluate Data Header
In this process, the data destined for application 1 are stripped of the message header
and the data flow client_in_data emerges. These data are then determined to be either

widget_in_data or application_in_data.

DED 1.2.6 - Evaluate Data Header

This process performs the same operation as DFD 1.2.1, except that the input and
output data are different. In any case, the process strips the data flow called
widget_action of its header, thereby forming widget_request. The output data are then

determined to be either widger_request_forward_server or widget_request_client_info.

DED2-1In ion r

This diagram contains two identical but inverse processes. We will only treat the
process on the left, the right-hand process being implied from the other's description.
In the process described, data incoming from client 1 are transformed into data bound

for client 2.

FD 2.1 - Ev, from Client 1
Data from client 1 are evaluated as either widget_request_forward_server,
initialize_client, or response_app_out. The data forwarded on to the integration server
from client 1's GRIM widget must be transmitted by the server to client 2. These data
include buffer requests, attribute list requests, or attribute list choices which need a data
response. For the first two requests listed, the integration server uses the responding
application's names to locate the socket descriptor of that client at the server. This is
possible because the integration server has a data structure containing socket descriptors

which are cross-referenced with the client name.

Appendix B 146

The data which an application sends in response to a request (response_app_out) are
one of three types: transfer data, server-destined data, or data which need to be relayed
in their current state to another client. Once again, transfer data are data that the server
may need to modify or manipulate in order to send them on to the client who requested
that data. Buffer data and attribute data are of this type. Server-destined data are sent
by a client to the integration server where they are received and evaluated. Examples
of server-destined data are client names which are placed in a socket data structure to
allow cross-referencing with socket descriptors. It is also socket connection
information such as a connection request or a client termination notification. If a client
has closed communications with the server (in the server's view it has terminated), the
socket descriptor and name corresponding to that client are removed from the socket
data structure. All clients in the integrated system who previously had the ability to
request data from the dead client are informed to delete its name from their selection
lists. Data which the client must obtain from the server in order to complete its
initialization phase are called inirialize_client. This data flow is defined as either a
connection request or a request for a list of clients from which the client can request
data. In response to a connection request, the integration server requests the client
application's name. Alternatively, if the request from the client is for a list of
exchange clients, the server compiles a list. Either the list of exchange clients, an
attribute list from another client in the system (relay_data), or a list update message

(add or delete client from selection list) forms widget_in_data.

When a header is appended to widger_in_data, new_buffer _data,
application_name_request, or widget_request_forward_server, the result is
data_for_client2,

Appendix B 147

DFD 2.1.1 - Evaluate Data by Header
Data incoming from client 1 are stripped of the header and client_out_data results.
The data flow is then split into widget_request_forward_server, response_app_out, or

initialize_app.

Appendix B 148

Contoxt-Diagram;6
Integration_Systemn

User
chgice
“dia t_i slon
application 1 Integrated dats | application 2
PP Syl:?om pp
10_ ata_To_applicallon
0

Appendix B 149

0.3
Integrated System

chglce_data

rom_application

Interface
2

date_to-«p Teta. to_spplication

Appendix B 150

1;3
Client Interface 1

decislop_data

GRIM
Widget
1

application
daia_for_client1

data] from
_appication

Socket
Interface
and Handler

2

-

Appendix B 151

1.1:1

GRIM Widget 1

Appendix B

Create
and Display

Determine
Widget
Action

2

reqest_conn
_client_nsmg

Interface

3

Evaluate
Connection
Info

.5

152

11.14
Evaluate Decision

attrlbute_llsl_cholce

request_current
_buffa

client_application

plest_attribute_item_event

Generate
Event

equest_attribute_list_event

Appendix B 153

NAME: 1.1.1.1;1
TITLE: Generate Event

INPUT/OUTPUT:

request_current _buffer : data_in
request_attribute_list ; data_in
request_buffer_event : data_out
activate_exchange : data_in
request_attribute_list_event : data_out
request_attribute_item_event : data_out
attribute_list_choice : data_in
client_application_name ; data_in

BODY:
This p-spec is best described using a decision table.

request

buffer

event list
client_application_name Y
request_buffer_event Y
activale_exchange Y
attribute_list_choice N
request_attribute._list N

Appendix B

request
attribute attribute

event item

LZZZ~

request

event

L EZZ

154

1.1.2,4
Determine Widget Action

Determine
Callback
Function

A

dget_action

Execute
Action

2

request_conn
_cliant_name

Appendix B 155

1.1.2.12
Determing Callback Function

roquest_amlbuL_llst_wom

request_buffer_event

Deatermine
Caliback
Function
Name

A

request_buifer_caliback
request_attribute_Hem_callback

request_attrlbuti_llst_calIback

Appendix B 156

NAME: 1.1.2.1.1;1
TITLE:; Determine Callback Function Name

INPUT/OUTPUT:

request_buffer_event : data_in
request_attribute_list_event : data_in
request_attribute_item : data_in
request_attribute_item_callback : data_out
request_attribute_list_callback : data_out
request_buffer_callback : data_out

BODY:
This process is best described by a decision table.

requesl_ request_ request_

attribute_ attribute_ buffer_
item_ list_ callback
callback callback
request_buffer_event N N Y
request_attribute_list_event N Y N
request_attribute_item Y N N

Appendix B 157

1.1.2.2;7
Execute Action

responding_
application_name

Hst_
cholce

Appendix B

callback
Bulld
Header
.|
hgader
pdquest_buiffer_from
_application2
Send
Data request_attribute_
list_TronT—
2 application2
redpond_to_
attriqute_
list_chgice

requgst_conn
_clignt_name

request_client_app_name

158

1.1.2.2.1:1
Build Header

Appendix B

Determine
Header

1
request_buffer
pader

aHfribute_ltem
/ header

159

NAME: 1.1.2.2.1.1;1
TITLE: Determine Header

INPUT/OUTPUT:
request_attribute_item_callback : data_in
request._attribute_list_callback : data_in
request_buffer_callback : data_in
request_attribute_item_header : data_out
request_attribute._list_header : data_out
request_buffer_header : data_out

BODY:
This process is best described using a decision table

request_request_ request_

attribute_
item_header

request_attribute_item_callback Y
request_attribute_list_callback N
request_buffer_callback N

Z~<Z

Appendix B

attribute__
list_header

N
N
Y

buffer_
header

160

NAME: 1.1.2.2.2:1
TITLE: Send Data

INPUT/QUTPUT:

responding_application_name : data_in

header : data_in

request_buffer_from_application? : data_out
request_attribute_list_from_application2 : data_out
respond_to_attribute_list_choice : data_out
list_choice : data_in

request_conn_client_name : data_in
request_client_app_name : data_out

BODY:
This process is best described using a decision table,
request_ request_ respond_to request_
buffer_ attribute_ attribute _ client_
from_ list_from__ list_ application
application2 application2 choice _name
responding_application_name Y Y Y Y
header Y Y Y Y
list_choice N N Y N
request_conn_client_name N N N Y

Appendix B 161

1.1.3;2
Socket Interface

data_foy/ widget

Read
Header

A

Determine
Data

phnection_info

Type
2

Appendix B

v

162

NAME: 1.1.3.1;1
TITLE: Read Header
INPUT/OUTPUT:
data_for_widget : data_in
w_data : data_out

BODY:
This process is described in structured English,

READ header.

Appendix B 163

1.1.3.2;2
Determine Dala Type

lisf_update
Info

sxthange
"_application
_list

pation

widget_dispjdy
_dats
cnnection_info

Appendix B 164

NAME: 1.1.3.2.1:1
TITLE: Evaluate Data

INPUT/OUTPUT:

socket_closed : data_in
connection_request : data_in
list_update_info : data_in
attribute_list : data_in
exchange_application_list : data_in
owning_application_name : data_in
widget_display_data : data_out
connection_info : data_out

BODY:

This process is best described using a decision table.
widget_
display
_data

socket_closed N

connection_request N

list_update_info Y

attribute_list Y

exchange_application_list Y

owning_application_name Y

Appendix B

connection_
info

ZZZZ<~

165

1.1.45
Create and Display Widget

Appendix B

socket_dala
attribyite
_struciure au .
ownlin exchangs_
Swnln A apNication
applicailon_namd’ y °"-"'“"_ﬂ.|

Create
Motif

Transform
Name into
Motit

Strings
.6

otif_attribute

Ist-Mem
alf mqgtif
cliehCname pe eclion_list_
{ist_item
Display
tem_to_delete in Widget

4

166

NAME: 1.14.1;1
TITLE: Transform Name into Motif String

INPUT/OUTPUT:
owning_application_name : data_in
owning_application_name : data_out
motif_client_name : data_out

BODY:
This process is explained in structured English

READ owning_application_name
TRANSFORM owning_application_name into motif_client_name
PUT owning_application_name into socket_data_structure

NAME: 1.14.2;1
TITLE: Add or Delete List Item

INPUT/OUTPUT:

list_update_info : data_in
item_to_delete : data_out
motif_list_item : data_out

BODY:
This process is described using structured English

IF list_update_info = ADD

READ list_item

TRANSFORM list_item into motif_list_item
ELSE

READ item_to_delete
ENDIF

Appendix B

167

NAME: 1.14.3;1
TITLE: Create Motif Strings
INPUT/OUTPUT:

exchange_application_list ; data_in
motif_selection_list_item : data_out

BODY:
This process is described using pre/post conditions

Precondition:
data elements exchange_application_list occur

Postcondition:

produces Motif string motif_selection_list_item for every
member of the list.

Appendix B 168

1.1.4.44
Display in Widget

atty

pplication_name

Evaluate
for Display

3

Appendix B 169

NAME: 1.144.1;1
TITLE: Make Attribute List

INPUT/OUTPUT:
attribute_list_item : data_in
item_from_attribute_list : data_out

BODY:
This process is described using structured English

DO WHILE attribute_list_item occurs

ADD attribute_list_item to the attribute list

DISPLAY attribute_list_item in attribute list and produce item_from_attribute_list
END DO

NAME: 1,.1.44.2:1
TITLE: Make Client Selection List

INPUT/OUTPUT:
selection_list_item : data_in
application_name : data_out

BODY:
This process is described using structured English

DO WHILE selection_list_item occurs

ADD selection_list_item to the selection list

DISPLAY selection_list_item in selection list and produce application name.
END DO

Appendix B 170

NAME: 1.144.3:1
TITLE: Evaluate for Display

INPUT/OUTPUT:
item_from_attribute_list : data_in
buffer_data : data_in
attribute_list : data_in
application_name : data_in
choice_data : data_out

BODY:

This process is described using a decision table.
choice
data

application_name Y

buffer_data Y

attribute_list N

item_from_attribute_list N

NAME: 1.1.4.5;1
TITLE: Delete Item

INPUT/QUTPUT:
itlem_to_delete : data_in

BODY:
This process is described using structured English

DELETE item_to_delete from the widgetqs selection list.

Appendix B

choice
_data

ZZ

choice
_data

<ZZZ

171

NAME: 1.14.6;1

TITLE: Create Motif Strings
INPUT/OUTPUT:

attribute_list ; data_in
motif_attribute_list-Item : data_out

BODY:
This process is described using pre/post conditions.

Precondition:
data elements attribute_list occur.

Postcondition:
produce Metif string motif_attribute_list_item for every member of the list.

Appendix B 172

1.1.55
Evaluate Connection Info

socket_data
_structure

Determine
Connection
Info Action

A

cinnection_resquast

Accep!
Connection

3

Appendix B

173

NAME: 1.1.5.1;1
TITLE: Determine Connection Info Action

INPUT/OUTPUT:
connection_info : data_in
socket_closed : data_out
connection_request : data_out

BODY:
This process is described using pre/post conditions

Precondition:
occurrence of connection_info

Postcondition:
either socket_closed or connection_request is produced

NAME: 1.1.5.2;1
TITLE: Delete Socket

INPUT/OUTPUT:
socket_closed : data_in
client_sock : data_out
socket_data_structure : data_in
client_name : data_out

BODY:
This process is described using structured English

DELETE client_sock from socket_data_structure

DELETE client_name corresponding to client_sock from socket_data_structure

NAME: 1.1.5.3.1;1

Appendix B

174

1.1.5.3;2
Accept Connection

Create
New Socket

pw_connection socket_data_

structure

@nt_app_name

Appendix B 175

NAME: 1.1.3.3.1;1

TITLE: Create New Socket
INPUT/OUTPUT:
connection_request : data_in
client_sock : data_out
new_connection ; data_out

BODY:
This process is described using structured English.

CREATE new socket called client_sock
PUT client_sock into socket_data_structure

Appendix B 176

1.1.5.3.23
Request Name

ew_connection

peuEst_client

Send _app_name

Header
2

Appendix B 177

NAME: 1.1.53.2.1;1

TITLE: Build Header for Name Reqgnest
INPUT/OUTPUT:

new_connection : data_in

header : data_out

BODY:
This process is described using pre/post conditions

Precondition:
data element new_connection exists

Postcondition;
produce data header corresponding to new connection message

NAME: 1.1,5.3.2.2;1

TITLE: Send Header
INPUT/OUTPUT:

header : data_in
request_client_app_name : data_out

BODY:
This process is described using pre/post conditions.

Precondition:
data header occurs

Posicondition:
transmit header which represents request_client_app_name

Appendix B

178

1.2.7
Socket Interface and Handler

‘common_data
storage -

~widgel [Aag risade

gpt_request
Cinfo daet
/ aclion

data] from
cllegtt —

Agel_request_
ard_server

Add Heade

applicatlon="| for Server

ow butfor for Sarver

reque:
lnfo alize_cllent

common_data_
storage

data_lrom—application

Appendix B 179

1211

Evaluate Data Header

Appendix B

data_for_spplication1

Read
Header

4

cfient_in_data

Determine
Data

Type

180

NAME: 1.2.1.1;1

TITLE: Read Header
INPUT/OUTPUT:
data_for_application] : data_in
client_in_data : data_out

BODY:
This process is described using structured English

READ header

Appendix B 181

1.2.1.2;2
Determine Data Type

—gppitcaiSn_nams_request

Appendix B

_applications

182

NAME: 1.2.1.2.1;1
TITLE: Determine Data Type 2

INPUT/OUTPUT:
application_name_request : data_in
buffer_data_request : data_in
attribute_list_request : data_in
attribute_data_request : data_in
x-formed_buffer_data : data_in
x-formed_attribute_data : data_in
list_of_exchange_applications : data_in
attribute_list ; data_in

list_update : data_in
widget_in_data ; data_out
application_in_data : data_out

BODY:
This process is illustrated using a decision table.

widget_in appplication

_data _in_data
application_name_request N Y
buffer_data_request N Y
attribute_list_request N Y
atiribute_data_request N Y
x-formed_buffer_data N Y
x-formed_atiribute_data N Y
list_of_exchange_applications Y N
atribute_list Y N
list_update Y N

Appendix B 183

NAME: 1.2.2;1
TITLE: Get Data for Widget

INPUT/OUTPUT:

widget_in_data : data_in
connection_info : data_in
owning_application_name : data_in
w_data : data_out

BODY: This process is described using pre/post conditions.

Precondition:

occurrence of connection_info, widget_in_data, or owning_application_name.

Postcondition:
w_data is produced.

NAME: 1.2.3;1
TITLE: Receive or Relay Data

INPUT/OUTPUT:
application_in_data : data_in
new_buffer_data : data_out
request_application_info : data_out

BODY:
This process is explained through a decision table.

new

_buffer

_data
x-formed_attribute_data Y
x-formed_buffer_data Y
application_name_request N
buffer_data_request N
attribute_list_request N
auribute_data_request N

Appendix B

request
_application
_info

<l g2 2

184

NAME: 1.24;1
TITLE: Respond to Data Request

INPUT/OUTPUT:
data_from_application : data_in

request_application_info ; data_in
response_app_out : data_out

BODY:
This process is described using pre/post conditions.

Precondition:
occurence of request_application_info or data_from_application.

Postcondition:
response_app_out is produced

NAME: 1.2.5;1

TITLE: Get Data for Server

INPUT/QUTPUT:

response_app_out : data_in
application_out_data : data_out
widget_request_forward_server : data_in
initialize_client : data_in

BODY:
This process is described using pre/post conditions.

Precondition:
occurrence of response_app_out, widget_request_forward_ server, or
initialize_client

Postcondition:
application_out_data is produced.

Appendix B

185

1.2.6;1
Evaluate Data Header

widgej”action

Read
Header

Determine
Data

Type
2

Appendix B 186

NAME: 1.26.1;1

TITLE: Read Header

INPUT/OUTPUT:
widgel_action : data_in
widget_request : data_out

BODY:
This process is described in structured English.

READ header

Appendix B 187

1.2.6.2;2
Determine Data Type

s list_choice

quest_attribute

om_
Tcation_named

app

quest_buffer
n_spplication

pitént_app_name

Determine
Data Type 2

widget_reduyest_cllent_info

widgel_requept_forward_server

Appendix B 188

NAME: 1.2.6.2.1:1
TITLE: Determine Data Type 2

INPUT/OUTPUT:

request_buffer_from_application_named : data_in

request_attribute_list_from_application_named : data_in

attribute_list_choice ; data_in
request_client_app_name : data_in
widget_request_forward_server : data_out
widget_request_client_info : data_out

BODY:
This process is described by a decision table.

request_buffer_from_application_named
request_attribute_list_from_application_named
attribute_list_choice

request_client_app_name

NAME: 1.2.7;1

TITLE: Respond 1o Widget Request
INPUT/OUTPUT:
widget_request_client_info : data_in
common_data_storage : data_in
owning_application_name : data_out

BODY:

widget_request_
forward_server

A Sl

This process is described using pre/post conditions.

Precondition:
data element widget_request_client_info occurs

Postcondition:
owning_application_name is produced

Appendix B

widget_request
_client_info

<ZZZ

189

NAME: 1.2.8;1
TITLE: Add Header for Widget

INPUT/OUTPUT:

w_gdata : data_in
data_for_widget : data_out

BODY:
This process is described using pre/post conditions.

Precondition:
occurrence of w_data.

Postcondition;
data_for_widget is produced by prepending a header onto w_data

NAME: 1.2.9;1

TITLE: Add Header for Server
INPUT/OUTPUT:
application_out_data : data_in
data_from_client] : data_out

BODY:
This process is described using pre/post conditions

Precondition:
data element application_out_data occurs.

Postcondition:

data_from_client1 is produced by prepending a header onto application_out_data,

Appendix B

190

inlegralion Server

data_for dlient2 data_fon clientt

Evaluate
Data from
Client 2

2

Appendix B 191

214
Evaluate Data from Client 1

for client2

Hget in_dats
widget_regkest_forward_server
applicatja data_frdm_client1

Evaluate
Data by
Header

Accept
Connection

Determine
Init Request

Type
_app_out

Evaluate
Data

Type

list_of_exchynge_spplications

tragsfer_data

g::.ll od

n

for Widget Data into”
5 New Format

3

Appendix B

192

2112
Evaluate Data by Header

_fpam_client1

Read
Header

N

Determine
Data

Type

Appendix B 193

NAME: 2.1.1.1;1
TITLE: Read Header
INPUT/OUTPUT:
data_from_clientl : data_in
client_out_data : data_out

BODY:
This process is described in structured English

READ header

NAME: 2.1,1.2;1
TITLE: Determine Data Type

INPUT/OUTPUT:

client_out_data : data_in
widget_request_forward_server : data_out
initialize_client : data_out
response_app_out : data_out

BODY:
This process is described using a decision table.
widget_request_ initialize response_
forward_server _client app_out
request_buffer_from_application_named Y N N
request_attribute_list_from_application_named Y N N
attribute_list_choice Y N N
server_destined N N Y
transfer_data N N Y
relay_data N N Y
connection_request N Y N
request_for_xchg_app_list N Y N

Appendix B 194

NAME: 2.1.2;1
TITLE: Evaluate Data Type

INPUT/OUTPUT:
response_app_out : data_in
relay_data : data_out
server_destined : data_out
transfer_data : data_out

BODY:
This process is described by a decision table
relay_data server_destined transfer_data
attribute_list Y N
application_name N Y
close_sock N Y
buffer_data N N
attribute_data N N
NAME: 2.1.3;1

TITLE: Transform Data into New Format
INPUT/OUTPUT:

transfer_data : data_in

new_buffer_data : data_out

BODY:
This process is described using pre/post conditions.

Precondition:
data element transfer_data occurs.

Postcondition:
transform or translate transfer_data into new_buffer_data.

Appendix B

R ZZZ

195

NAME: 2.1.4;1
TITLE: Determine if New Socket or Closed Socket

INPUT/OUTPUT:
server_destined : data_in
list_update : data_out

BODY:
This process is described in structured English

IF server_destined = application_name
list_update = ADD
ELSE
list_update = DELETE
ENDIF

NAME: 2.1.5;1
TITLE: Data Destined for Widget

INPUT/OUTPUT:

relay_data : data_in
list_of_exchange_applications : data_in
list_update : data_in

widget_in_data : data_out

BODY:
This process is described by pre/post conditions.

Precondition:
data element relay_data, list_update, or list_of_exchange_applications occurs.

Postcondition:
produce widget_in_data.

Appendix B 196

NAME: 2.1.6;1

TITLE:; Determine Init Request Type
INPUT/OUTPUT:

initialize_client : data_in

request_for_xchg_app_list : data_out
connection_request : data_out

BODY:
This process is described using pre/post conditions.

Precondition:
occurrence of initialize_client.

Postcondition;
production of request_for_xchg_app_list or connection_request based on
evaluation of input.

NAME: 2.1,7:1

TITLE: Build List

INPUT/OUTPUT:
request_for_xchg_app_list : data_in
list_of_exchange_applications : data_out

BODY:
This process is described using pre/post conditions.

Precondition:
occurrence of request_for_xchg_app_list.

Postcondition:
production of a list_of_exchange_applications.

Appendix B

197

NAME: 2.1.8;1
TITLE: Accept Connection

INPUT/OUTPUT:
connection_request : data_in
application_name_request : data_out

BODY:
This process is described using pre/post conditions.

Precondition:
data element connection_request occurs.

Postcondition:
produce application_name_request.

NAME: 2.1.9;1
TITLE: Add Header and Send to Client 2

INPUT/OUTPUT:
widget_requesi_forward_server : data_in
new_buffer_data : data_in
widget_in_data : data_in
application_name_request : data_in
data_for_client2 ; data_out

BODY:
This process is described using pre/post conditions.

Precondition:
data element new_buffer, widget_in_data, application_name_request,
or widget_request_forward_server occurs.

Postcondition:
add header to produce data_for_client2

Appendix B 198

2.2;5
Evaluate Data from Client 2

for clientt

fget_in_data
widget_reqiest_forward_server

data_frém_client2

Accept
Connection

Evaluate
Data by
Header

Evaluate
Data
Type

2

list_of_exchqnge_spplications

trhysfer_data
destined

ned
Transform
for Widget Data into
B New Format

3

Appendix B

199

2212
Evaluate Data by Header

data_frg

_client2

Appendix B

200

Appendix C 201

GRIM_Widget;9

ey

-

GRIM_Widget
GRIM
Sock
ok
ind-ilsten
main_window mw
- X bo
0
parent
Make Main
Window
g_select_lodp
isock read_mask
read_mask
d
t d l
sol_rsadmugk select
Appendix C

202

MakeMenuBar;2
No title

Make
Menu
Bar

menu bar & Q main_window

MakeMenuBar

menu
-pane 9|

—

CreateMenu
Buttons

Appendix C 203

MakeSelectionBox;2
No title

main_window

MakeSBox

Appendix C

L

o'
selection

box 5 d st

_box

MakeSList

Selection

selection_box 6

9 malin_window

Make
Selection
Box

AN

selection
_box

set_colors_
of_recessed
_widget

Q

UnmanageStuff

204

MakeQtherStuft;2
No title

selection_box

MakeForm

Appendix C

form 9

MakeRadlo

message stals type
O O» O+
Y ¢ callback
frame q mw_column loggia&
Create
Toggle

205

eval_sel;3

o tide
I
de__muk
g.eval_sel
o_esk_id f_rd_msg
oo
header
header Os read_sock
sockp header
hudop
build_heade| write_head read_heade:

Appendix C 206

s8w_op;2
RJB title P
Q header
Q read_sock
g_sw_op
read_sock
read_ q
sock
hudnro‘
header.ma|
szt opoodat | eyl
P N
header.min hsader.min|
opcode 0 | opcode_0 l‘;;:g;:;:gn i

header.size_in_bytes\ oread_sock
? -2y R Qheader.size_in_byte gread_sock

© read_sock Q heador Qread_sock Qheader
add_namnye get_ne
_ls¥

Appendix C 207

g_add_name;2
No title

Q header.size_in_bytes

@ read_sock

g_add_name|

name
Feyl

new

name_size string %

&L
& new_string

set_args
read_name create_string creﬁtegla'Bel

Appendix C

208

g_add_fo_list;3
No title

Appendix C

add_to
st

Q header

g_add_to_list

réad_name

Q read_sock

Q, hame

g_put_in_list

209

g_get_new_list;2

No title

Appendix C

9 header.size_in_bytes

Q read_sack

get_new_list

g_put_in_list

st

g_delete_from

210

g_make_attrib_{ist;3

No title

name_size

responder

o

read_sock

make
gittrlb_lln

e

_dlalog

list_widget

] make_attrib
:I list_callbacks

ulating N\ N e | ceiBek
"n'‘:,'v":':ﬁ b name_s toxts g
d :gg'“ﬂ & lis1_widget Y comp_na ‘b\ .
make_bboarld :lv‘l.dl;.n—t""_ n.d_mm{ make_text AddToList

bullnlln_boarp

CreatePus!
Button

Appendix C

d ok

S cancel

bulating

CreatePus|
Button

21

ma_callbacks;2
No title

ma_callbacks
FaN
attrib_list ” cancel
_ltem_cailback ok_caltback callback
sock
sock]
name_
size %
header L,
rupondu§
kill_the_
write_header wrils_name bulletin_
board

Appendix C 212

mw_callbacks;1
NoTitle

mw
calibacks
menu pan aclive ok |
callbdge - callbatk
list_callba '
ul] activate
cailback callback”

caback | | Einibute-

Appendix C 213

NAME: GRIM:4
TITLE: GRIM main module

PARAMETERS:
sockets : data_out
num_socks : data_out
listnum : data_out
list_item : data_out
my_client : data_out

LOCALS:

Sock * socket used to listen for connections *
grimmy * server intemet information *

one

grim_len

BODY:
M=
Source Code Filename: GRIM.c

Special Considerations: NONE

Purpose:

This is the main module of the GRIM widget
interface. Its purpose is to establish a socket

10 listen for a connection request from the owning
client and to make a widget for display.

This module is generic EXCEPT for the pathname
which is defined at the top of the program. This
pathname identifies a unique UNIX socket which
must match the pathname set by the owner client.
Belongs to GRIM

e mmmee *f
#idefine _BSD

#include <stdio.h>

#include <sysftypes.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#include <sys/ioctl.h>

#linclude <ermo.h>

#include <gys/un.h>

#linclude <X11/StringDefs.h>

#include <Xm/Xm.h>

#include “./mysock2.h”

#define pathname “../execs/s.grimsock”
int sockets{2];

int num_socks;

int listnum;

XmString list_item([50];

[*char client_list[50)[50];*/

Appendix C

214

char *my_client;
void make_widget(;

void main()

{

int Sock; /* socket on which listening occurs */
struct sockaddr_un grimmy; /* server internet information */
static int one = 1; /* set as a constant */

int grim_len;

listnum = 0;

/* — open socket to listen on and use a stream connection — */
Sock = socket(AF_UNIX, SOCK_STREAM,0);

if (Sock <0)

(

perror{“server:socket™);

exit(-3);

)
sockets[0) = Sock;
num_socks = 1;

/* — clear the server structure — */

bzero{(char *)&grimmy, sizeof(grimmy));

grimmy.sun_family = AF_UNIX;

strepy(grimmy.sun_path, pathname);

grim_len = strlen(grimmy.sun_path) + sizeof(grimmy.sun_family);

/* — bind the Sock to the server %/
if (bind (Sock, (struct sockaddr *)&grimmy, grim_len) < 0)
(

perror(“'server:bind™);
exit(-3);
}

listen (Sock, 5);
make_widget():
unlink(pathname);

} /* --- end main module --- */

») 1] 0 b aje e e 2 aje o aje afe o 2 aje o 0 20 o o 2t e L2 e 1 L] e o o e g e o e 2 e d e e e e el ol ol ok ok
NAME: g_make_widget;5

TITLE: GRIM g_make widget

PARAMETERS:

receive_info_toggle : data_out * Widget *

activate_toggle : data_out * Widget *
client_attrib_toggle : data_out * Widget *

Appendix C 215

selection_box : data_out * Widget *
main_window : data_out * Widget *
bulletin : data_out * Widget *
row_column : data_out * WidgeL *
label_widget : data_out * Widget *
event_generator : data_out* int *
active_switch : data_out *int*
o_active_one : data_out ™ Widget *
recieve_id : data_out * Widget *

frame : data_out * Widget *

list : data_out * Widger *
LOCALS:

parent * top level widget *
menu_bar * widget *

form " widget *

BODY:

J*

Source Code Filename: g_make_widget.c

Special Considerations: NONE

Purpose:

To create a widget for displaying choice

data to the user. The widget consists of a

main window with a menu bar at the top containing
choices to reset the list and to exit the widget.

Beneath the menu bar is a selection list containing

the applications in the integrated system with

from which the owning client (client who owns the GRIM
widget) can request data.

Included in this m-spec is the code for make_widget and
all modules beneath it with the exception of those
stemming from the work proc declared in the main
portion of make_widget. Those functions will be

listed separately in other m-specs. The callbacks

for the make_widget routines are also included here.
Belongs to GRIM

#include <stdio.h>

#define FALSE 0

#define TRUE 1

#idefine size_of_name 50
#include <sysfun.h>
#define pathname “,./fexecs/s.grimsock”
#include <X11/Intrinsic.h>
#include <X11/Shell.h>
#include “./mysock2.h”
#include <Xm/Xm.h>
#linclude <Xm/CascadeB.h>
#tinclude <Xm/DialogS.h>

Appendix C

216

#include <Xm/BulletinB.h>
#include <Xm/Command.h>
#include <Xm/FileSB.h>
#include <Xm/Form.h>
#include <Xm/Frame.h>
#include <Xm/MainW.h>
#include <Xm/MessageB.h>
#include <Xm/PushB.h>
#include <Xm/PushBG.h>
#include <Xm/RowColumn.h>
#include <Xm/SelectioB.h>
#include <Xm/ToggleBG.h>
#includm<Xm/ToggleB.h>
#include <X11/MwmUtil.h>

static Widget MakeMainWindow();
static Widget MakeMenuBar();
static void CreateMenuButtons(};
static Widget MakeSelectionBox();
static Widget MakeSBox();

static Widget MakeSList(;

static Widget MakeOtherStuff();
static Widget MakeDialogBox();
static Widget CreateToggle();
static Widget MakeForm();

static void UnmanageStuff();

static Widget MakeRC();

static Widget MakeRadio(;

static XmString Str2XmString():
static Widget CreateScrolledList();
static Widget create_active_dialog(};
static Widget MakeActiveDialog(;
static Widget MakeLabel();

static void SetLabel();

static void tell_xchg_client();

static void send_attrib_msg();

void g_select_loop();

extern int listnum;

extern XmString list_item{50];
extern int sockets[2];

extern int num_socks;

extern char *my_client;

fad GLOBAL DECLARATIONS
#define MENU_HELP 200

#define MENU_EXIT 201

#define MENU_RESET 202

#define SEND_EVENT 1

#define RECEIVE_EVENT 2

#define ACTIVATE_EVENT 3

Appendix C

*

217

#define ATTRIBUTE_EVENT 4
#define NONE 0

static Widget receive_info_toggle;
static Widget activate_toggle;
static Widget client_attrib_toggle;
Widget selection_box;

static Widget main_window;
static Widget list;

static Widget bulletin;

Widget row_column;

Widget label_widget;

int event_generator;

int active_switch;

Widget o_active_one;

char *receive_id;

static Widget frame;

f i */
/* — callback for the menu bar selection “actions” ~ */

void menu_pane_callback(w, client_data, call_data)

Widget w;

caddr_t client_data, call_data;

{

Arg args(10]);

intn;

XmAnyCallbackStruct *cbstruc = (XmAnyCallbackStruct *) call_data;

switch((int) ctient_data)

case MENU_EXIT:
printf("EXITING THE SERVER PROGRAM \n™);
unlink(pathname);
exit(0);
case MENU_RESET:
n=0;
XtSetArg(argsin], XmNset, FALSE); n++;
XtSetArg(args(n], XmNindicatorOn, TRUE); n++;
XtSetValues(receive_info_toggle, args, n);
X1tSetValues(activate_toggle, args, n);
XtSetValues(client_attrib_toggle, args, n);
break;
default:
printf(“unexpected tag in menu_pane_callback \n");
break;
)
)
r* */
* —— create the callback for list action *f
void list_callback(w, client_data, call_dala)
Widget w;

Appendix C

218

caddr_t client_data;

caddr_¢ call_data;

{

extern Boolean activate;

int size_of_client = 50;

char *siring;

XmListCallbackStruct *list_data = (XmListCallbackStruct *)call_data;
intn;

Arg args[10];

/* — put chosen list item into the client_id — */
XmStringGeiL1oR (list_data->item, XmSTRING_DEFAULT_CHARSET, &string);
if (event_generator == RECEIVE_EVENT)
{

receive_id =(char *) matloc(size_of_client);
receive_id = strepy(receive_id, string);
} else if (event_generator = ATTRIBUTE_EVENT) {
send_aturib_msg(string);
)
event_gencrator = NONE;
/* — now determine if it is for the sender or the receiver — %/
/* — enable the send and receive and activate radio buttons — */
if (*receive_id != NULL)
{
n=0
XtSetArg(args[n], XmNset, FALSE);
XtSetValues(receive_info_toggle, args, n);
XtSetValues(activate_toggle, args, n);
XtSetSensitive(receive_info_toggle, TRUE);
XtSetSensitive(activate_toggle, TRUE);
1
returmn;
)
e ™
/* — add the caliback for the work proc — */
Boolean select_callback(client_data)
caddr_t client_data;
(
/* — call the select_loop module when no event in widget quene — */
select_loop(:
retum(FALSE);
}
* */
* ¥
void receive_callback(w, client_data, toggle_struct)
Widget w;
XmToggleButtonCallbackStruct *toggle_struct;
(
f* — if the new siate of the toggle is true, then show available list—*/
if(toggle_struct->set 1= FALSE)

Appendix C

219

event_generator = RECEIVE_EVENT;

)

retum;
}
™ */
void attribute_callback(w, client_data, toggle_struct)
Widget w;
XmToggleButtonCallbackStruct *toggle_struct;

/* — if the new siate of the toggle is true, then show available list—*/
if(toggle_struct->set != FALSE)
(
event_generator = ATTRIBUTE_EVENT;
)
retum;
}
r* *
void activate_callback(w, client_data, toggle_struct)
Widget w;
caddr_t client_data;
XmToggleButtonCallbackStruct *toggle_struct;
{

/* — if the new state of the toggle is true, then show available list—*/
if(toggle_struct->set {= FALSE)
{
/* — need to create a dialog widget that lets the user accept choice */
o_active_one = create_active_dialog(row_column, receive_id);
)
retumn;
}
/‘ Emmmm I Smmme————=== ¥/
void active_cancel_callback(w, client_data, call_data)
Widget w;
caddr_t client_data, call_data;

/* — do nothing — */

printf("in active_cancel doing absolutely nothing\n™);
)
”
void active_ok_callback(w, client_data, call_data)
Widget w;
caddr_t client_data, call_data;
{

active_switch = TRUE;

tell_xchg_client(receive_id);
)
= ——cse—ow »f
void g _make_widget()
(
Widget parent;

*/

Appendix C

220

Widget menu_bar;
Widget form;
event_generator = (;

/* — initialize the top shell — */
parent = Xtlnitialize(“make_widget.c”,
“X_GRIM",

0
/* — make the main window for the widget — */
main_window = MakeMainWindow(parent);

/* — make the menu bar in the main window — */
menu_bar = MakeMenuBar (main_window);

/¥ — make a selection box — */
selection_box = MakeSelectionBox {(main_window);

M — make other things, like buttons, to put in the box — */
form = MakeOtherStuff (selection_box);

/* — set up the main window — */
XmMainWindowSetArcas (main_window, menu_bar, NULL, NULL, NULL selection_box);

* — set up the work procedure for branching — */
/* — add a work proc to keep the select polling — */
SetWorkProc();

XtRealizeWidget(parent);

XtMainLoop();

return;

)

l‘m—-—-—-___———.“ _==.—.=——m——_=m==_—====*/
static Widget MakeMainWindow(Widget parent)

(

intn;

Arg args[10);

Widget m_window;

n=0;

XiSetArg (args[n], XmNscrollingPolicy, XmAPPLICATION_DEFINED); n++;
XtSetArg (argsin], XmNwidth, 275); n++;

XtSetArg (argsin], XmNheight, 375); n++;

m_window = XmCreateMainWindow (parent, “main_window", args, n);
XtManageChild (m_window);

retum(m_window);

}

e
!

static Widget MakeMenuBar{ Widget widget)
(

*/

Appendix C 221

Widget menu_bar;
Widget cascade;
Widget menu_pane;
Arg args(10];

intn;

f* — create the menu bar on the main window(widget) — */
n=0;

menu_bar = XmCreateMenuBar(widget, “menu_bar”, args, n);
XtManageChild(menu_bar);

f* — create pulldown menu off of the menu bar — */
n=0;
menu_pane = XmCreatePulldownMenu(menu_bar, “menu_pane”, args, n);
CreateMenuBultons(menu_pane);
n=0;
XtSetArg (args[n], XmNsubMenuld, menu_pane); n++;
cascade = XmCreateCascadeButton {menu_bar, “Actions”, args, n);
XtManageChild(cascade);
return{menu_bar);
)

*/

’M
void CreateMenuButtons(Widget menu_pane)
(

Widget button;

intn;

n=0;

button = XmCreatePushBution (menu_pane, “Reset”, args, n);

XtAddCallback (button, XmNactivateCallback, menu_pane_callback, MENU_RESET);
XitManageChild (button);

n=0;

button = XmCreatePushButton (menu_pane, “Exit”, args, n);

XtAddCallback (button, XmNactivateCallback, menu_pane_callback, MENU_EXIT);
XtManageChild (button);

retum;

)

,._____________
static Widget MakeSelectionBox (Widget widget)
(

Widget text;

Arg args[10};

int m;

Widget hsbar, vsbar;

Widget s_box;

XmValue pixel_data;

/* — create the selectionne box — */
s_box = MakeSBox(widget);

/* — register callbacks for selection box list — */

Appendix C

*

222

list = MakeSList(s_box);

/* — set the colors of the recessed widgets — */
if (DefaultDepthOfScreen(XDefaultScreenOfDisplay(XtDisplay(widget))) > 1)
{
text = XmSelectionBoxGetChild (s_box, XmDIALOG_TEXT);
XtSetArg (args[0], XmNhorizontalScrollBar, &hsbar);
XtSetArg (args[1], XmNverticalScrollBar, & vsbar);
XtGetValues (XtParent(list), args, 2);
_XmSelectColorDefault (s_box, NULL, &pixel_data);
XiSetArg (args[0], XmNbackground, *((Pixel *) pixel_data.addr));
XtSetValues (list, args, 1);
XiSetValues (text, args, 1);
XtSetValues (hsbar,args, 1);
XtSetValues (vsbar,args, 1);

}

/* — unmanage children that werenqt needed — */
UnmanageStuff(s_box);
XtManageChild(s_box);
return(s_box);
}
,' -+ */
static Widget MakeSBox(Widget widget)
(
inti, n;
Arg args[10]);
Widget s_box;
XmString charset = (XmStringCharSet) XmSTRING_DEFAULT_CHARSET;
XmString new_string;

/* — clear out the list item array — */
listnum = 0;
for (i = 0; i < 50; i++)
{
list_item(i] = XmStringCreateLtoR (NULL, charset);
]

/* — set list header text — */
new_string = XmStringCreateLtoR(“Exchange Selections for “, charset);

/* — create the selection box — */

n=0;

XtSetArg (args[n], XmNshadowThickness, 1); n++;

XtSetArg (args[n], XmNshadowType, XmSHADOW_QUT); n++;

XtSetArg (args[n], XmNtexiString, list_item[0]); n++;

XiSetArg (args[n], XmNlistltems, list_item); n++;

X1SetArg (args[n], XmNlistdtemCount,listnum); n++;

XtSetArg (args[n], XmNIlisiLabelString, new_string); n++;

XtSetArg (args[n), XmNselectionLabelString,
XmStringCreateLtoR(*Current Exchange Selection”, charset)); n-++:

Appendix C

223

s_box = XmCreateSelectionBox(widget, “'selection_box", args, n);
return(s_box);

r* mEmome */
static Widget MakeSLis((Widget selection_box)

(
Widget s_list;

/* — add a list to the field of the selection box — */
s_list = XmSelectionBoxGetChild (selection_box, XmDIALOG_LIST);

* — add callbacks for the list — */
XtAddCaltback (s_list, XmNbrowseSelectionCallback, list_callback, NULL);
XtAddCallback (s_list, XmNdefault ActionCallback, list_callback, NULLY);
retumn(s_list);
}
* T "/
static void UnmanageStuff(Widget selection_box)
(
int i;
Widget kid[5];

/* — unmanage children not needed by this selection box — */
i=0;
kid[i++] = XmSelectionBoxGetChild (selection_box, XmDIALOG_SEPARATOR);
kid[i++) = XmSelectionBoxGetChild (selection_box, XmDIALOG_OK_BUTTON);
kid[i++] = XmSelectionBoxGetChild (selection_box, XmDIALOG_CANCEL_BUTTON);
kid[i++] = XmSelectionBoxGetChild (selection_box, XmDIALOG_APPLY_BUTTON);
kid[i++] = XmSelectionBoxGetChild (selection_box, XmDIALOG_HELP_BUTTON};
XtUnmanageChildren (kid, i);
retumn;

}

¥ == ss==szs===s=s=somnomees ¥

static Widget MakeOtherStuff (Widget widger)

{

Widget box;
Arg args[10];
int n;

XmSwing label_string = NULL;

/* — create outer form box — */
box = MakeForm(widget);

/* — create radio box and dialog style toggles */
frame = MakeRadio{box);
row_column = MakeRC(frame);
receive_info_toggle = CreateToggle(row_column,
“receive data”,
“CLIENT FROM WHICH TO RECEIVE DATA",
FALSE,
XmN_OF_MANY,

Appendix C

224

receive_callback);

client_attrib_toggle = CreateToggle(row_column,
“client attribute”,
“CLIENT ATTRIBUTE LISTING",
FALSE,
XmN_OF_MANY,
attribute_callback);

activate_toggle = CreateToggle{row_column,
“activate”,
“ACTIVATE EXCHANGE",
FALSE,
XmN_OF_MANY,
activate_callback);

XtSetSensitive(activate_toggle, FALSE);
return{box);

/

» —— */

static Widget MakeForm(Widget widget)
{

int n;

Arg args[10];

Widget box_form;

* — create outer form — */

n=0;

XtSetArg(args[n], XmNy, 300); n++;

XtSetArg(args[n], XmNx, 0); n++;

XtSetArg(args[n], XmNwidth, 200); n++;
XtSetArg(args[n], XmNheight, 100); n++;

box_form = XmCreateForm (widget, “outer_form", args, n);
XtManageChild(box_form);

return(box_form);

}
/

static Widget MakeRadio(Widget box)
{

int m;

Arg args[10];

Widget radio_f{rame;

*

/* — create radio box */

n=0;

XtSetArg (args[n], XmNshadowType, XmSHADOW_ETCHED_IN); n++;
XitSetArg (args[n], XmNIleftAttachment, XmATTACH_FORM); n++;
XiSetArg (args[n], XmNrightAttachment, XmATTACH_FORM); n++;
Xi1SetArg (args[n], XmNtopAttachment, XmATTACH_FORM); n++;

Appendix C 225

XtSetArg (args[n], XmNbottomAttachment, XmATTACH_POSITION); n++;

XiSetArg (args[n], XmNbottomPosition, 75); n++;
radio_frame = XmCreateFrame (box, “frame”, args, n);
XtManageChild (radio_frame);
retum(radio_frame);

}

/

*», e~

static Widget MakeRC(Widget frame)
{

intm;

Arg args[10]);

Widget rc;

/* — make row column widget for toggles — */
n=0;
XtSetArg(args[n], XmNorientation, XmVERTICALY); n++;
rc = XmCreateRowColumn (frame, “row_column”, args, n);
XtManageChild(rc);
retum(rc);

)

/

*. - S S—‘— - S —"-S—UA: S S S—, S S S S S - S -
e e T T e e T e e e SRS

*/

*/

Widget CreateToggle(parent, name, message, state, type, callback_func)
Widget parent;

char name{];

char message[];

Boolean state;

int type;

void (*callback_func)();

{

Widget toggle_widget;
XmString motif_string;
XmString Str2XmString();
Arg args[10];

int n;

/* — change message into motif string — */
motif_string = Sr2XmString(message);

n=0;

XiSetArg (argsin], XmNlabelString, motif_string); n++;
XitSetArg (args[n], XmNindicatorType, type); n++;

/* — try XmNindicatorOn with True and False — */
XiSetArg(args[n], XmNindicatorOn, TRUE); n++;

/* XtSetArg(args[n], XmNindicatorOn, FALSE); n++;*/
XtSetArg(args[n], XmNset, state); n++;

toggle_widget = XmCreateToggleButton{parent, name, args, n);
XtManageChild(toggle_widget);

Appendix C

226

/¥ — add a callback for when the value is changed — */
XtAddCallback(toggle_widget, XmNvalueChangedCallback, callback_func, NULL);
XmStringFree(motif_string);

retum(toggle_widget);

*/

S —— */

2 Aol
1l
li

etWorkProc()

- 0N

Boolean work_state = FALSE;

if(work_state == FALSE)
(
work_state = XtAddWorkProc(select_callback, NULL);
printf(“‘starting select callback \n");
)
return;
}
fad S seTT o R */
XmString Su2XmString (string)
char *string;
{
XmString motif_string;

M — create motif string — */
motif_string = XmStringCreatel toR(string,
XmSTRING_DEFAULT_CHARSET);
return(motif_string);
} _
r i
" S e e e SR S S S S R s E s s s mn a s e an e
Widget create_active_dialog(Widget parent, char receiver[])
(
Widget active_widge, dead_widget;
active_widge = MakeActiveDialog(parent, receiver);

f* — getrid of the help button — */
dead_widget = XmMessageBoxGeltChild(active_widge, XmDIALOG_HELP_BUTTON);
XtUnmanageChild(dead_widget);

/* — set up callback on cancel button — */
XtAddCallback(active_widge, XmNcancelCaliback, active_cancel_callback, NULL);

/* — set up callback on ok button — */
XtAddCallback(active_widge, XmNokCallback, active_ok_callback, NULL);
retum(active_widge);
)
- */
static Widget MakeActiveDialog(Widget parent, char receiver[l)
(

Appendix C 227

char *new_receive_string;

XmString motif_string, Str2XmString();
intm;

Arg args[10];

Widget a_widge;

/* — concatenate the sender and receiver with messages — */
new_receive_string = strcat(“‘client from whom data received is , receiver);
printf(“c_a_d: strcat new_receive_string %s\n”, new_receive_string);
motif_string = Str2XmString(new_receive_string);

/* — create widget — */
n=0;
XiSetArg(args[n], XmNmessageString, motif_string); n++;
a_widge = XmCreateInformationDialog(parent,
“active_widget”,
args,
n);
XtManageChild(a_widge);

/* — reset string message — */

new_receive_string = strcpy(new_receive_string, “client from whom data is requested *);
free(new_receive_string);

XmSuingFree(motif_string);

returm(a_widge);

)

las */
void tell_xchg_client(char *name)

{
HEADER header;

/* — send a message to the client to tell server which exchg — */
header.size_in_bytes = size_of_name;

header.maj_opcode = 1;

header.min_opcode = 1;

—sendit—/
if (write(sockets{1], &header, sizeof(HEADER)) < 0)
(

perror(“tell_xchg_client: write header™);

exit(1);
)
printf(“tell_client; the name requested is %s\n", name);
if(write{sockets[1]), name, size_of_name) < 0)

perror(*‘tell_xchg_client: write name”);
exit(1);
}
return;
} * —end tell_xchg_client — */
" y

Appendix C

228

void send_attrib_msg(char *name)
{
HEADER header;

header.size_in_bytes = 0;

header.maj_opcode = 1;

header.min_opcode = 3;

print{(*mack_widget: sending message to client for attributes \n™);

/* —send it — */
if (write(sockets[1], &header, sizeof(HEADER)) < 0)
{

perror(“sam: write header™);
exit(1);

printf(“‘sam: the name requested is %s\n", name);
if(write(sockets[1], name, size_of_name) < 0)
{
perror(“‘sam: write name");
exit(1);
)
return;
} /* — end send_attrib_msg.c — */

NAME: g_select_loop;$
TITLE: GRIM g_select_locp

PARAMETERS:

LOCALS:

BODY:

/* o ———— = ———{
Source Code Filename: g_select_loop.c

Special Considerations: NONE

Purpose:

To check whether or not a signal has been detected
on a socket,

Belongs to GRIM

*/

/

*

e ook ok e ok ok

"
g_select_loop.c
Function: sets the select mode on for the server to screen incoming connections

Variables: sock - socketinfo

Appendix C

229

Coded by: Michele Grieshaber
Date : 08/28/91

*/

/

* Sonmmees=so=o=ox ¥
#define _BSD

#define TRUE 1

#idefine FALSE 0

#include <stdio.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <sysftime.h>
#include <netinetfin.h>
#include <newdb.h>

#linclude <ermo.h>

#include “./mysock2.h”

/* — supporting routines — */
void g_eval_sel();
/* — end supporting routines — */

extem int sockets[2];

extern int num_socks;

void g_select_loop(}

{

fd_set read_mask; /* mask which filters sockets for reading */
struct timeval to; J* time structure for select imeout */

inti, rc; /* rc is the return code variable */

int Isock; /* product of a socket sort — largest sock*/
extern int ermo; /* error number for debug purposes */

/* — clear the read mask for the select — */
FD_ZERO{(&read_mask);

/* — compare the mask against all available sockets ———wm—— %/
/* — also keep track of the largest socket value for later use ./

/* — but 1o do that, set sock initially to zero */
Isock = 0;

for (i = 0; i < num_socks; i++)

{
FD_SET(socketsli], &read_mask);
if(sockets[i] > Isock)
(
Isock = sockets[i]; /* sorting Isock for nfds arg */
)

}/* — end for nsocks — ¥/
/* — set the timeout values for the select — */

bzero{(char *)&to, sizeof(to));
to.tv_sec = 0;

Appendix C 230

/* — hang out in the select — */
rc = select(Isock+1, &read_mask, (fd_set *)0, (fd_set *)0, &to);
if(rc < 0)
{
perror(“select™);
exit(1);
} else if (rc > 0) {
/* — evaluate the response to select if any — */
£_eval_sel(read_mask);
}/*—endifrc—"*/

return;
} * —end g_select_loop.c — */

Mok Nk kR Rk o o e e sk ok kR Nk ok
NAME: g_eval_sel;6
TITLE: GRIM g_eval_sel
PARAMETERS:
read_mask : data+control_in
LOCALS:
BODY:
,!0!
Source Code Filename; g_eval_sel.c
Special Considerations: NONE
Purpose:
To evaluate the signal which occurred on a socket.
Belongs to GRIM
= T EEE———.. ,
/
e T T e e L
”
g_eval_sel.c
Function: evaluates the value of the read mask returned from the
select call in set_sel.
If the signal comes in on the listening socket, the
client is requesting to be accepted for connection by
the GRIM server.
If the signal comes on a socket that has already been
established (accepied), the header is read by cl_rdmsg
and appropriate action is taken.
Variables: sockets - array containing socket info
read_mask - indicates which sockets have info on them

Coded by: Michele Grieshaber
Date : 06/10/91
*/

Appendix C 231

/

fidefine _BSD

#define TRUE 1
#define FALSE 0
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb h>
#include <sysfioctl.h>
#include <fentl.h>
#tinclude <sys/file.h>
#include <signal.h>
#include <sys/select.h>
#include <ermo.h>
#include “./mysock2.h”

/* — supporting routines — */
void g_rd_msg();

void g_ask_id();

/* — end supporting routines — */

extern int sockets[2];
extern int num_socks;

g_eval_sel(fd_set read_mask)
{

int new_sock; /™ new socket accepted by the server */
inti; /* just your ordinary everyday integer */
struct sockaddr_in sin; /* structure containing client ip stuff */

int length = sizeof(sin); /* lenght of above structure */

/* — check to see if the read_mask matches any of the available sockets —*/

if(FD_ISSET(sockets[0], &read_mask))
(

/* — accept the new connection — %/

if{(sockets{num_socks] = accepi(sockets[0],&sin,&length)) < 0)

(
perror(“Server:accept”);
exit(-3);

}

/* — send a message 1o the newly connected client to get his name */

g_ask_id(sockets{num_socks]);
num_socks += I;
) else {

/* — check the other connected sockets one at a time for info — */

for(i = 1; i < num_socks; i++)

{
if (FD_ISSET(sockets[i], &read_mask))
{

Appendix C

*/

232

/* — read message on socket — */
g_rd_msg(socketsfi]);
}/* —end if — ¥/

}/* ——end for — */
}/* —endif —*/
return;

} /* —end g_eval_sel.c —*/

NAME: g_ask_id;5
TITLE: GRIM g_ask_id

PARAMETERS:
LOCALS:
BODY:

I* S T S S

Source Code Filename: g_ask_id.c

Special Considerations: NONE

Purpose:

To inquire the name of the client application
who owns the GRIM widget

Belongs to GRIM

#define _BSD

#define TRUE 1

#define FALSE 0

#include <stdio.h>
#include <sysftypes.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/uio.h>
#include <ermo.h>

#include *. /myseck2.h”

void write_header ();
void g_ask_id(int sock)

{
HEADER header;

* — send msg to client asking for an identifying string — */

header.size_in_bytes = 0;
header.maj_opcode = (;
header.min_opcode = 0;
write_header(sock, header);

Appendix C

*/

Ao e 3 o e ol o 2 o 2 e s s e o 2 o ol e o o o o a0 e 2 e 2l o kol

233

return;
} /* —end g_ask_id —*/

* S o e o e ool aje o ol 3 e e o 000 o0 o o a0 o o o oo 0 o e o S i e e e e ol ool b e ol ool b o ol o e oo o o ool o o e

NAME: g_rd_msg:5
TITLE: GRIM g_rd_msg

PARAMETERS:

LOCALS:

BODY:

,l-]
Source Code Filename: g_rd_msg.c

Special Considerations: NONE

Purpose:

To read the header off of the socket to send

to be evaluated.

Belongs to GRIM

/

.

*/

,‘
g_rd_msgc
Function: reads the header from the information coming in on a socket.

Header info then sent to a routine which does a switch
on the major and minor opcodes contained in the header,

Variables: read_sock - socket on which info is waiting
sock_struc - structure containing socket info

Coded by: Michele Grieshaber

Date : 06/10/91

changed for the grim interface by mmg on 8/27/91

*/

/

*/

*f

#define _BSD

#define TRUE 1

#define FALSE 0

#include <stdio.h>
#tinclude <sysftypes.h>
#linclude <sys/socket.h>
#include <sys/socketvar.h>
#tinclude <sys/fuio.h>
#include <ermo.h>
#include *../mysock2.h”

/* — supporting routines — */
void g_sw_op();

Appendix C

234

void g _close_sock();
/* - end supporting routines — */

g_rd_msg(int read_sock)
{

int nval; /* return code from read */
HEADER header; /* header read from the socket. Contains info */
/* such as size of info on socket, major opcode */
/* and minor opcode i

/* — read the header from the information sitting on the socket — */
nval = read(read_sock, &header, sizeof(HEADER)),
if(nval == -1)
{
perror(“rd_msg: read");
exit(1);
} else if(nval == 0) {
/* — go to routine to close connection and take socket out of list - */
g_close_sock(read_sock); :
] else {
/* — send to sw-0p to determine action associated with opcode — */
g_sw_op(header, read_sock);
} P+ —endif —*/

return;
}/* —endg rd_msg.c—*/

,,,,,, ook o J Mo e LL, e o 20 o e o e o o e e e o ok

NAME: g_close_sock:6
TITLE: GRIM g_close_sock

PARAMETERS:

LOCALS:

BODY:

fud . S
Source Code Filename: g_close_sock.c

Special Considerations: NONE

Purpose:

To close a socket which is no longer active

Belongs to GRIM

s

[r=== =omm= s So==*/
* g_close_sock.c

Function: deletes a socket from the socket list when a client is

closed,

Arguments: int dead_sock — socket that has been closed

SOCK_INFO *sock_struc — structure containing number of

Appendix C 235

sockets and the socket list

Coded by: Michele Grieshaber

Date : 06/05/91

changed for grim interface by mmg on 8/27/91

*/

[

#include <stdio.h>

#include <sys/un.h>

#include “./mysock2.h”

#define pathname “../execs/s.grimsock”

extern int sockets[2];
extem int num_socks;

g_close_sock(int dead_sock)
(

int ij;

static int size_of_name = 50;

/* — loop thru socket list to find entry which matches dead socket — */

for (i =0; i < num_socks; i++)

if(sockets[i] == dead_sock)
{

f* — if the socket is dead, close the widget — %/
unlink(pathname); /* geis rid of socket file used for communication */

exit(0);
) M — end if dead_sock — */
}*—endfori—*/

return;
) * —end g_close_sock.c — */

NAME: g_sw_op;5
TITLE: GRIM g_sw_op
PARAMETERS:

LOCALS:
BODY:

¥ ==
Source Code Filename: g_sw_op.c

Special Considerations: NONE

Purpose:

To determine the module which will handie

the message which has just come in on the socket.

Belongs to GRIM

Appendix C

/

sosu==*/

I‘
g.sw_op.c

Function: based on the major and minor opcodes contained in the
header structure passed in from the rd_msg routine,
this routine (using switch statements) will determine

the appropriate action 10 take

Variables: header - contains size and maj and minor opcodes
sock_struc - structure containing socket info
read_sock - socket on which information resides

Coded by: Michele Grieshaber

Date : 06/10/91

changed for grim interface by mmg on 8/27/91
*/

/

e —

#idefine _BSD

#define TRUE 1

#define FALSE 0
#define size_of_name 50
#include <sidio.h>
#linclude <sys/types.h>
#include <sysfsocket.h>
#finclude <sys/socketvar.h>
#include <sys/uio.h>
#include <ermo.h>
#include *../mysock2.h”
#define ADD 1

#define DELETE 0

[* — supponrting routines — */
void g_get_new_lisi();

void g_add_name();

void g_add_to_list(;

void g_make_attrib_list();

/* — end supporting routines — */

g_sw_op(HEADER header, int read_sock)
{

inti, j; Maniforani®/

/* — begin major opcode switch
switch(header.maj_opcode)
{
case O:
/* — begin minor opcode switch for major case 0
switch(header.min_opcode)
{

case (-

Appendix C

*/

*/

237

g_add_name(read_sock, header.size_in_bytes);
break;

case I:
break;

case 2:
g_add_to_list(read_sock, header);
break;

case 3;
break;

default:
printf(“g_sw_op: not a valid minor opcode\n”);
break;
} /* — end switch{min_opcode) — */
* — end minor opcode switch for major case 0 */
break;

case 1:
break;

case 2:
switch(header.min_opcode)
(
case 0
/* — get updated list info which originated from server — */
/* — note that header.size_in_bytes is actual an
action code for the widget to add or delete list —*/
g_get_new_list(read_sock, header.size_in_bytes);
break;

case 3:
f* — get and display attribute list — */
g_make_attrib_list(read_sock, header);
break;

default;
print(“not a valid minor opcode for major opcode = 2\n");
break;
) /* — end switch minor opcode for major opcode =2 — */
break;

default:
printf(“g_sw_op: not a valid major opcode \n");
break;
}/* — end switch(maj_opcode) — */
/* — end major opcode swilch */
retumn;
) *—endg sw_opc—*/

Appendix C

238

NAME: g_add_name;7
TITLE: GRIM g_add_name

PARAMETERS:
LOCALS:
BODY:

l*
Source Code Filename: g_add_name.c

Special Considerations: NONE

Purpose: :

To receive the owning client applicationgs

name and to place that in the widget for identification

purposes.
Belongs to GRIM

#include <stdio.h>

#include <string.h>

#include <Xm/Xm.h>
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#linclude <Xm/SelectioB.h>

extern char *my_client;
extern Widget selection_box;
char *read_name();

void g_add_name(int read_sock, int name_size)

(

XmString client_name, new_string;

XmString charset = (XmStringCharSet) XmSTRING_DEFAULT_CHARSET;
intm;

Arg args[10];

char *name;

if{name_size > 50)
{

return;
}

/* read name to add 1o list off of socket */

name = read_name(read_sock, name, name_size);
my_client = (char *)malloc(name_size});
my_client = strcpy(my_client, name);

/* create a Motif string out of the name — */

client_name = XmStringCreateL1oR (my_client, charset);

new_string = XmStringCreateLtoR(“Exchange Selections for *, charset);
new_string = XmStringConcat(new_string, client_name);

Appendix C 239

/* — set the arguments for the selection box to include new name — */
n=0;

XtSetArg (args[n), XmNlistLabelString, new_string); n++;
XtSetValues (selection_box, args, n);

free(name);

XmStringFree(client_name);

XmStringFree(new_string);

return;
} * —end g_add_name — */

NAME: g_add_to_list;7
TITLE: GRIM g_add_to_list

PARAMETERS:
LOCALS:
BODY:

/t [—
Source Code Filename: g_add_to_list.c
Special Considerations: NONE

To receive a list of clients to put in the
exchange selections list of the widget
Belongs to GRIM

p——_— *I

#define _BSD

#define size_of_name 50
#define ADD 1

#idefine DELETE 0
#include <stdio.h>
#include <sys/types.h>
#include <sys/socketvar.h>
#linclude <sys/socket.h>
#include <sys/uio.h>
#include <netinet/in.h>
#include <netdb.h>
#include <sys/un.h>
#include *./mysock2.h”

/* — declaration of external functions — */

void g_put_in_List);

char *read_name();

void g_add_to_list(int read_sock, HEADER header)
{

int i;

Appendix C

ookt dkak sk gk sk sk ok kb ok

240

char *name;

/* — get the incoming info from client on xchg list — %/
for (i = 0; i < header.size_in_bytes; i++)
{
name = read_name(read_sock, name, size_of_name);
if (header.size_in_bytes = ADD)
{
g_put_in_list(name);

)

} /* — end for header.size_in_bytes (number in list) — */
free(name);

return;
} /* —end g_add_to_listc —*/

NAME: g_get_new_list;6
TITLE: GRIM g_get_new_list

PARAMETERS:

LOCALS:

BODY:

Fadl —— =]
Source Code Filename: g_get new_list.c

Special Considerations: NONE

Purpose;

To add or delete a client name from the

exchange selections list.

Belongs to GRIM

=%/

#define _BSD

#define size_of_name 50
#idefine ADD 1

#define DELETE 0
#include <stdio.h>
#include <sys/types.h>
#include <sys/socketvar.h>
#include <sys/saocket.h>
#include <sys/uio.h>
#include <netinet/in.h>
#include <netdb.h>
#tinclude <sysfun.h>
#include “./mysock2.h™

/* — declaration of external functions — */
void g_put_in_List);

Appendix C

ek aoak Ak

ek 2 N o ook

241

void g_delete_from_list{);
char * read_name();

I end declaration of e.funcs */

void g_get_new_list (int sock, int action)
{

inti;

char *new_item;

f* — read in the list items and put them in a linked list — %/
new_item = read_name(sock, new_item, size_of_name);

f* — determine if action is add or delete — */
if (action == ADD)
{
g_put_in_list(new_item);
) else {
g_delete_from_list (new_item);
)

return;
} /* —end g_get_new_list.c —*/

0o 0 o o o e e o o o o o e e o oo o o e o ol o o e ke

-

NAME: g_put_in_list;5
TITLE: GRIM g_put_in_list

PARAMETERS:
name : data_in
LOCALS:
BODY:

I‘
Source Code Filename: g_put_in_list.c
Special Considerations: NONE
Purpose:

Places a name in the selection list of
the GRIM widget

Belongs to GRIM

#include <stdio.h>
#include “../mysock2.h”
#include <Xm/Xm.h>
#include <X11/Intrinsic.h>
#include <Xm/SelectioB.h>

extern Widget selection_box;
extern int listnum;

Appendix C

.....-._...__‘I

242

extern XmString list_item[50];
void g_put_in_list(char *new_item)

intn;
XmString charset = (XmStringCharSet) XmSTRING_DEFAULT_CHARSET;
Arg args(10};

/* — go thru linked list and put items in the widget — */

/* — add items to list for each client that is attached — */
list_item[listnum] = XmStringCreateLtoR(new_item, charset);
listhum += 1;

n=0;

XtSetArg (args[n], XmNtexiString, list_item[0]); n++;
XtSetArg (args[n], XmNlistltems, list_item); n++;

XtSetArg (argsin], XmNlistltemCount, listnum}; n++;
XtSetValues (selection_box, args, n);

return;
} /*—end g_put_in_list.c —*/

ek

LES L LL L L

NAME: g_delete_from_list;5
TITLE: GRIM delete_from_list

PARAMETERS:
item_name : data_in
LOCALS:

BODY:

I‘ -+

Source Code Filename; g_delete_from_list
Special Considerations: NONE

Purpose:

To delete the name of a client who has
disconnected from the integrated system. This
client name is in the selection list used to
request data exchanges.

Belongs to GRIM

*

#idefine size_of_name 50
#include <stdio.h>
#include <string.h>
#include “./mysock2.h”
#include <Xm/Xm.h>
#include <X11/Intrinsic.h>
#include <Xm/SelectioB.h>

Appendix C

243

extern Widget selection_box;
extern int listnum;
extern XmString list_item[50];

void g_delete_from_list (char *new_item)

{

inti, j, n;

XmString charset = (XmStringCharSet) XmSTRING_DEFAULT_CHARSET;

Arg args([10];
XmString item;

/* — change the new_item to an XmString, then compare — */
item = XmStringCreateLtoR(new_item, charset);

/* — cycle thru the list and determine which one matches — */
for (i = 0; i <= listnum; i++)

{
H(XmStringCompare (list_item([il, item) == ()

* — delete that item from the list — */
for (j = i; j <= listnum; j++)

list_item[j]} = XmStringCopy(list_item(j+1]);
)
listhum -= 1;
}
}

n=0; :

XtSetArg (args[n], XmNtextString, list_item([0]); n++;
XtSetArg (args[n], XmNlistItems, list_item); n++;
XtSetArg (args[n], XmNlistltemCount, listnum); n++;
XtSetValues (selection_box, args, n);

return;
) #—end g_delete_from_list.c — */

Appendix C

e e e obe e o a b ok sl ok o o ok

M o 0 e e e e o

NAME: g_make_attrib_list;5
TITLE: GRIM g_make_attrib_list
PARAMETERS:

LOCALS:
BODY:

F e
Source Code Filename: g_make_attrib_list.c
Special Considerations: NONE

Purpose:

To create a list of attributes based on

items sent to the widget from another application
in the integrated system.

Belongs to GRIM

|

#define _BSD

#define size_of_name 50
#include <stdio.h>

#include <sysftypes.h>
#include <sys/socketvar.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <netinet/in.h>
#include <netdb.h>

#include <sys/un,h>
#include “./mysock2.h”
#include <Xm/List.h>
#include <Xm/BulletinB.h>
#include <Xm/PushB.h>
#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>
#linclude <Xm/Xm.h>
#include <X11/ShellL.h>
#include <X11/MwmUtil.h>

/* — function declarations — */
char *read_name();

void write_header();

static Widget make_bboard_dialog();
static Widget make_list_widget();
static XmString Su2XmString();
static Widget CreatePushButton();
extern Widget row_column;

Widget bulletin_board; /* — bulletin board widget for attribs — */
int comp_num = 0; /* — component number of item chosen — */

extern int sockets[2]; /* — contains listening and client sock — */
extemn int num_socks; /* — number of socks in sockets array - */
char *responder; /* — name of client to whom CAL belongs — */

M =mmmeee——— e —zczz=a

Appendix C

Lt L L L]

*

245

void attrib_list_item_callback({w, client_data, call_data)

Widget w;

caddr_t client_data;

caddr_t call_data;

{

char *string;

XmListCallbackStruct *list_data = (XmListCallbackStruct *)call_data;
intn;

Arg args[10];

/* — put chosen list item into the client_id — */
XmStringGetLtoR (list_data->item, XmSTRING_DEFAULT_CHARSET, &string);

/* — need 10 extract the component number from the string — */
sscanf(string, “%d", &comp_num);

retum;

|

” ===z== */

/* ok_callback:

this callback for the ok button will send the list choice to

the client which then tansfers it to the server and so on, ¥/

~
void ok_callback(w, client_data,call_data)

Widget w;

caddr_t client_data;

caddr_t call_data;

{

HEADER header; /* — header for protocol msg to client — */

*/

header.size_in_bytes = (;

header.maj_opcode = I;

header.min_opcode = 4;

write_headen(sockets[1], header);

/* — write the source name 1o the client — */

/* — source name is the name of the client to whom the client attribute

list belongs */
write_name(sockets[1], responder, size_of_name);

printf(“ok_callback: the source name is %s\n”, responder);

/* — send comp num to client for transmission to server etc — */
if (write(sockets[1], &comp_num, sizeof(int)) < 0)
{
perror(*‘ok_callback: writing comp num™);
exit(1);
)

f* — close the widget — */
XtUnmanageChild(bulletin_board);
free(responder);

return;

)

Appendix C

246

[ad */

/* cancel_callback:

this callback for the cancel button will destroy the client attribute
list without transmitting any information to the client */

* Y Y e */
void cancel_callback(w, client_data,call_data)

Widget w;

caddr_t client_data;

caddr_t call_data;

(

* — kill the client attribute widget — */
XtUnmanageChild(bulletin_board);

return;

)

” */

/" === *

void g_make_attrib_list(int read_sock, HEADER header)

{

int i; /* — just an integer — */

char *comp_name; /* — name to go in attribute list — */

int size_of compname = 21; /* — size of name to go in attrib list — */
int comp_num; /* — component number — */

Widget list_widget; * — list widget identifier — */
XmString motif_string, Su2XmString ; /* — strings for motif — %/

char text(4]; /* — text buffer to put comp_nutn in — */
char blank(] =**; /* — need i say more? — *f

char *tex(2; /* — text string for composite list item */

/* — read the source name of the attribute list — */
responder = read_name(read_sock, responder, size_of_name);

/* — create a bulletin board dialog widget — */
bulletin_board = make_bboard_dialog();

/* — create a list widget to go in bulletin board — */
list_widget = make_list_widget(bulletin_board, header.size_in_bytes);

/* — read the list off of the socket and put it in a file selec widget */
for (i =0; i < header.size_in_bytes; i++)
{
/* — read component number and component name — */
if(read(read_sock, &comp_num, sizeof(int)) < 0)
(
perror(“*make_att_list: reading comp_num™);
exit(1);
)

comp_name = read_name(read_sock, comp_name, size_of_compname);

/* — clear out text — */
bzero((char *}text, sizeof(lext));

Appendix C

247

™ — write comp number into text buffer — */
sprintf(text, “%d", comp_numy);

/* — put text string into text2 string — */

text2 = (char *)malloc(size_of_compname+4+1};

text2 = strcat(text2,text);

/* — add a blank after the comp num in the text string — */
text2 = streat{text2 , blank);

/* — add the name of the component to the string — */
tex(2 = streat(text2, comp_name);

/* — add the string as an entry in the list — */
AddToList(list_widget, text2, i+1);

/* — clear and free — %/

bzero{(char *)text2, size_of_compname+4-+1);
free(text2);

free(comp_name);

}
XiManageChild(bulletin_board);
return;

} M — end make_attrib_list.c — */
/‘ e e e e e S e s SO S S S
Widget make_bboard_dialog()

mRnTEoroe=====%f

(

Widget bulletin;

Widget ok, cancel;

Arg args[10];

int n;

XmString motif_string, Str2XmString();
char text[] = “client attribute list™;
motif_string = Str2XmString(text);

/* — create a bulletin board dialog, but donqt manage it. A callback
will manage it later ————*/
n=0;
XtSetArg(argsin], XmNautoUnmanage, False); n++;
XtSetArg(args[n], XmNnoResize, False), n++;
Xi1SetArg(args[n), XmNdialogTitle, motif_string); n++;
bulletin = XmCreateBulletinBoardDialog(row_column,
“pulletin”,
args,
n);

/* — create push buttons in dialog, the ok is default — */
n=0;

XtSetArg(args[n], XmNshowAsDefault, 1); n++;

ok = CreatePushButton (bulletin, “OK", args, n, ok_callback);
n=0;

XtSetArg(argsin], XmNdefaultButton, ok); n++;
XitSetValues(bulletin, args, n);

n=0;

Appendix C 248

XiSetArg(args[n], XmNx, 50); n++;
cancel = CreatePushButton(bulietin, “Cancel”, args, n, cancel_callback);
XmStringFree(motif_string);

return(bulletin);
) /* — make_bboard_dialog.c — */
” === */

Widget make_list_widget(Widget parent, int list_size)
{

Widget list;

Arg args[10];

intn;

/* — set up empty list —*/
n=0;
XtSetArg(argsin]l, XmNitemCount, 0); n++;
XiSetArg(args[n], XmNselectionPolicy, XmSINGLE_SELECT); n++;
XiSetArg(args[n], XmNvisibleItemCount, list_size); n++;
XtSetArg(argsn], XmNy,50); n++;
list = XmCreateScrolledList(parent,
“liSl.”,
args,
n);
XtManageChild(list);
XtAddCailback(list,
XmNsingleSelectionCalltback,
attrib_list_item_callback,
NULL);
return{list);
) /* — make_list_widget.c — */
,*
AddToList(Widget widget, char string[], int position)
{
XmString motif_string, Str2XmString();
motif_string = Se2XmString(string);

*/

XmListAddItemUnselected (widget,
motif_string,
position);

XmStringFree(motif_string);

} /* — AddToList — */

"

XmString Sir2XmString (string)

char *string;

{

XmString motif_string;

motif_string = XmStringCreateLtoR(string,
XmSTRING_DEFAULT_CHARSET);

return{motif_string);

)

Appendix C 249

[F===cnaz=m== g *f
Widget CreatePushButton(parent, name, args, n, caliback_func)
Widget parent;

char name(];

Arg *args;

intn;

void (*callback_func)();

{
Widget push_widget;

push_widget = XtCreateManagedWidget(name,

xmPushButtonWidge1Class,
parent,
args,
n);
XtAddCaliback(push_widget,
XmNactivateCallback,
callback_func,
NULL):

return({push_widget);
} /* — createpushbutton — */

Appendix C

250

Appendix D

251

a xipuaddy

Integration_Client;4

sp_sack 3 handiert

creale socket_ ask_for_ main

(44

QSoelt

der Qholder

BN

Bulld_ write_
Header header

cl_rdmsg;1
No title

9 read_sock

read_sock

o

header

Q,

Read_Header sock_close

Appendix D ' 253

254

Appendix D

send_name;1
No title

send_nam

9 read_sock

9 header

send_name

application_name
Q. name_size

header headerg

& read_sock
read_sock

Bulld_Header write_headoer; write_name

Appendix D 255

get cl_list;1
No tile

Appendix D

Bulld_Header

9 read_sock

9 header.size_in_bytes

size_of name

Q,
read_sook Q u;:lte_soek
write_sack @ hame
size_of name Q
write_header read_nsme wrlte_name

256

relay_data_request;2
No title

size_of_name

read_sock L

chosen_name

o

v

9 read_sock

relay_data_
reguest

write_sock

S slze_of_name

read_name Bulld_Header

write_header

write_name

Appendix D

257

req_attrib_list;1

No title

Bulid_Header

O read_sock

req_attrib_list

write_sock

ook Q
e g

requester

Q size_of_name
Q. requester

write_header

write_name

Appendix D

write_name

258

65¢

& req_from_attrib_list;1
3 No title
:
(-}
req_from_
attrib_list
list_num
header
o
Bulid_Header

read_list_num write {ist_num

update_widget;1
No title

? header.size_In_bytes

Q read_sock

update_widget

read_sock
size_of_name

Q write_sock

S header Q header

read_name Bulid_Header write_header write_name

Appendix D 260

receive_buffer;1
No title

receive_
buffer

9 read_sock

9 header

recelve_
buffer

Appendix D 261

relay_attrib_list;1
No title

9 read_sock

9 header

relay_attrib
_list

Appendix D 262

respond_to_buffer_request;1
No title

buffer

9 read_sock

9 header

respond_to
_buffer

Appendix D 263

give_attrib_list;1
No title

Appendix D

attib_
list

9 header

give_attrib_
list

0 read_sock

264

respond_attrib_item;1
No title

_attrib
_item

? read_sock

? header

respond_
attrib_item

Appendix D 265

NAME:; ap_sock:6
TITLE: Integration client main module

PARAMETERS:
ACTIVE_SERVER : data_out
ACTIVE_WIDGET : daa_out
LOCALS: server
gethostbyname

Host

Pid

c

len

i

one

ermo

handle_me

end_handle

grimmy

grim_len

BODY:

o —— —
Source Code Filename: ap_sock.c

Special Considerations:

Sets up global definitions

for data which the client interface and the application

will have in common.

Purpose:

To open asynchronous sockets with the server and the

GRIM widget and set up an event handler which will

act when a signal comes in on one of those sockets,

Belongs to client application

=== ==xe —===== ¥/
/

* e =T *f
,lt

ap_sock.c

Function: to act as the AP/SOCK interface between the B-Spline
Toolkit anl the integration server located on Port 2000

Variables: none at the moment

Coded by: Michele Grieshaber

Date : 06/10/91

edited the 25th of August for use with client-based GRIM

*/

/

*oom==— o mme————mmae */
#define _BSD

#define TRUE 1

#idefine FALSE 0

#include <stdio.h>

Appendix D 266

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <netinet/in.h>
#include <netdb.h>

#include <sysfioctlL.h>
#include <sys/select.h>
#include <fontl.h>

#include <sysffile.h>
#linclude <sysfun.h>
#include <signal.h>

#linclude <ermo.h>

#include . /mysock2.h”
#include “fu/knight/show/execs/showtime.h”
#define HostName “cadrt9”
#define Port 2000

#define Port2 2002

#define HostName2 “cadri9”

void main_ap();
void cl_rdmsg();
void ask_for_widget(;

{* — glabal declarations so the handler can understand variables used — */

int Sock;

int Sock2;

MODEL *Model = (MODEL *)NULL;

char pathname[] = *../execs/s.grimsock”;

int ACTIVE_WIDGET = TRUE;

int ACTIVE_SERVER = TRUE;

* end global decs */

/ e e e 2 ttt**lﬂ****/

I*

handlerl.c

Function: to handle events that come across on the asynchronous
socket which communicates with the server

Variables: none can be passed in but it needs to know the socket
descriptor for communication with the server and the

location of the Model data structure so that information
contained therein can be used by the b-spline toolkit,

Coded by: Michele Grieshaber

Date : 06/10/91
*/
Falab bbb DLl DLl AL L L DLl L Ll s P T T T ok
void handler1(Signal, Code, SCP)
int Signal, Code;
struct sigcontext *SCP;
{
fd_set read_mask; /* mask which tells select what to look for */
struct timeval to; /* time value structure for the select call */
intre; /* return code */

Appendix D

267

int nsock;

/* do a select 1o see if there is indeed information on the socket 1o read*/
FD_ZERO{(&read_mask);

/* set mask to include socket to server and to the GRIM */
FD_SET(Sock,&read_mask);
FD_SET(Sock2, &read_mask);

/* — clear out the timeval structure — */
bzero((char *)&to, sizeof(10));
to.tv_sec = 0;

/* determine if sock or sock2 greater */
if (Sock > Sock2)
{
nsock = Sock;
) else {
nsock = Sock2;

]

/* use select to check for socket activity */
rc = select(nsock+1, &read_mask, (fd_set *)0, (fd_set *)0, &to);
if (rc < 0)
{
perror(*'select:™);
} else if(rc > 0) {
if(FD_ISSET(Sock, &read_mask))
{

cl_rdmsg(Sock);

}else {
cl_rdmsg(Sock2);

)
)
retum;
)} /* — end handler] — */
- s R e e /
/ 2 e P] e g afe 2 o o o o e o e i 2 —vlvﬁ-*-v/

main()

(

struct sockaddr_in server; [* server internet info */
struct hostent *Host, *gethostbyname(); /* host information */
int Pid; /* process ident */
intc, len, i ,one =1;

extern int ermno; /* error number */

struct sigaction handle_me, end_handle; /* signal structures */
struct sockaddr_un grimmy;
int grim_len;

do
{

Appendix D

268

/* — create a socket for the client — */
Sock = socket(AF_INET,SOCK_STREAM,0);

if (Sock == -1)

{
perror(“Inet_Client:socket™);
exit(-3);

)

Sock2 = socket(AF_UNIX,SOCK_STREAM,0);

if (Sock2 == -1)

{
perror(“Inet_Client:socket");
exit(-3);

)

/* — clear out the handle_me structure — */
bzero((char *)&handle_me, sizeof(handle_me));
handle_me.sa_handler =handler];
sigaction(S1GIO, &handie_me, &end_handle);

/* — set up the socket to be nonblocking????777? — */
/* — set up the async event handler */
/* — set the process receiving SIGIO signal to us — */
Pid = getpid(;
if (ioctl(Sock,SIOCSPGRP,&Pid) == -1)
{
perror(“ioctl FIOSETOWN™);
exit(1);
)

/* — allow receipt of async i/o signals — */
if (ioctl(Sock, FIDASYNC, &one) < 0)
{

perror(“ioctl FIOASYNC:™);

exit(1);

}
if (iocu(Sock2,SIOCSPGRP,&Pid) == -1)
{
perror(“ioctl FIOSETOWN™);
exit(1);
)

* — allow receipt of async i/o signals — */
if (ioctl(Sock2, FIOASYNC, &one) < ()
(
perror(“ioctl FIOASYNC:™);
exit(1);
)
Host = gethostbyname(HostName); /* resolves strg to internet address®/
if (Host == NULL)
(

Appendix D

269

perror(“Inet_Client;host”);
exit(-1);

}

bzero((char *)&server sizeof(server)); /*binds socket to port 0 */
server.sin_family = AF_INET; /* set domain */

server.sin_port = Port; /* set port to connect */

beopy(Host->h_addr, (char *)&server.sin_addr.s_addr,Host->h_length);

/* — copies the address of what he wants

10 connect to into sin structure — */

bzero((char *)&grimmy, sizeof(grimmy));

grimmy.sun_family = AF_UNIX;

strepy(grimmy.sun_path, pathname);

grim_len = strlen(grimmy.sun_path) + sizeof(grimmy.sun_family);

/* — try o connect 10 the server — */
¢ = connect(Sock, (char *)&server, sizeof(server));
if(c<0)
{
perror(*‘connecting stream socket “');
} else {
printf(*ap_sock: connected to server\n”);

/* connect the socket to the GRIM */
¢ = connect(Sock2,(struct sockaddr *)&grimmy,sizeof(struct sockaddr_un));
if(c<0)
(
perror(“connecting stream socket 2");
exit(1);
) else {
printf(“ap_sock: connected to grimmy\n");
)

} while (c < 0 && ermo == ECONNREFUSED),

/* now that the connection has been established, must proceed to the

main portion of the application */

* main_ap will call the main program of B-Spline Toolkit and start exec */
ask_for_widget(Sock);

main_ap{);

}/* — end ap_sock.c — */

Appendix D

270

02000000 a2 e e e e ok

NAME: ask_for_widget;4
TITLE: IC ask_for_widget

PARAMETERS:

Sock : data_in
ACTIVE_SERVER : data_in
LOCALS: header

BODY:

P [—
Source Code Filename: ask_for_widget.c
Special Considerations: NONE

Purpose:

Sends a request to the server for a

list of clients connecied to the integrated
system from whom it can request data. This
information when received will be relayed
to the GRIM widget for display.

Belongs to client application

*/

#idefine _BSD

#include <stdio.h>

#include <sys/types.h>

#linclude <sys/socket.h>

#include <sys/socketvar.h>

#linclude <sys/uio.h>

#include <netinet/in.h>

#include “/u/michele/sock/mysock.h”

extern int ACTIVE_SERVER; /* used to make sure server active */

void write_header();

void ask_for_widget(int sock)

(
HEADER header;

/* — ask the server to send info to client to pass 1o widget — */

header.size_in_bytes = 0;
header.maj_opcode = ()
header.min_opcode = 1;
if (ACTIVE_SERVER)

write_header(sock, header);
} /* — end if active server — */
retumn;
} /* — end ask_for_widget.c —*/

Appendix D

n

kN

WwkkkdR

NAME: main_ap;3
TITLE: IC main_ap
PARAMETERS:

LOCALS:
BODY:

l*
Source Code Filename:
Special Considerations: NONE

Purpose:

*/

/

”
Name: main_sap.c
Author; Michele Grieshaber
Date: 06/1091

*/

Description: this subroutine is called by the AP/SOCK Interface

to start the main routine of the B-Spline Toolkit.
The data structure Model is initialized here and

contains data pertinent to the geometry used in the

Toolkit,

*/

1
#include <stdio.h>
#include “/u/knight/show/execs/showtime.h”

/¥ — supporting routines — %/
void showtime();
/* — end supporting routines — */

void main_ap()

(

f* — start the b-spline toolkit — */
showtime();

return;
} /* — end main_ap.c — */

Appendix D

*/

272

Srkokak b o s ook b o o e e e o o oo o e o o o o o s o o o o o 2 s s e o o o e o o ook o o o ok o ok

TITLE: IC event handler

PARAMETERS:

LOCALS:

BODY:

o ===

Source Code Filename: part of ap_sock.c

Special Considerations: NONE

Purpose:

The handler allows the reception of asynchronous
signals, It determines upon which socket the
signal occurred using a read_mask, When a signal
occurs, the main application is suspended, the handler
is enabled, the signal is read and its message
evaluated for handling. When the event has been
properly handled, control is restored to the

main application,

=== e "'/

NAME: cl_rdmsg;4
TITLE: IC c]_rdmsg

PARAMETERS:

read_sock : data_in

LOCALS: header

nval

BODY:

M =————====——c=c==== S
Source Code Filename: cl_rdmsg.c

Special Considerations: NONE

Purpose:

First read performed on a signal. Tries

to read a “headers™ worth of data from the sockeL

If there is no data on the socket, then it is

perceived as a disconnection signal. When there

is data, the header is read and sent for evaluation

to a module which performs select_ops based on

the header.maj_opcode and header.min_opcode portions
of the header.

Belongs to client application
*/
/
L S = */
Appendix D 273

Ill
cl_rdmsg.c
Function: reads the incoming header of the socket connected 10
the server and sends it to cl_swop for resolution
Variables: read_sock - socket on which information is waitin
Coded by: Michele Grieshaber
Date : 06/10/91
*/
/

Wooe

*/

#define _BSD

#include <stdio.h>

#include <sys/ftypes.h>

#tinclude <sys/socket.h>

#iinclude <sys/socketvar.h>

#include <sysfuio.h>

#include <netinet/in.h>

#include */u/michele/sock/mysock.h”
#include “/u/knight/show/execs/showtime h”

/* — function declarations — */
void ¢1_swopQ;

void sock_close();

/* — end function declarations — */

cl_rdmsg(int read_sock)

{

HEADER header; /* header containing info size and maj/min opcodes */
int nval; /* retum code */

/* — read the header from the information sitting on the socket — */
nval = read(read_sock, &header, sizeof(HEADER));
if(nval == -1)
(
perror(“cl_rdmsg; read”);
exit(1);
) else if(nval == 0) {
/* — go to routine to close connection and take socket out of list - */
sock_close(read_sock);
} else {
/* — send the header 1o a rontine which will switch based on opcodes — */
¢l_swop(read_sock, header);
)
retum;
} /¥ —end cl_rdmsg.c —*/

Appendix D

274

LEL LT 2

W abeabs o ol e e o e e o e e e e N o L ST A P L L] o e e o e ok

NAME: sock_close;5
TITLE: IC sock_close

PARAMETERS:
LOCALS:
BODY:

Fadk—
Source Code Filename: sock_close.c
Special Considerations: NONE

Purpose:

To close socket which is no longer active.
Belongs to client application

et %/

#include <stdio.h>
#define FALSE 0
#define TRUE 1

extern int ACTIVE_WIDGET;
extern int ACTIVE_SERVER;
extern int Sock2;

void sock_close(int dead_sock)
(

inti;

/* — determine if the closed socket was to the server or widget — */
if(dead_sock = Sock2) /* — widget is the dead socket — */
{
ACTIVE_WIDGET = FALSE;
} else { /* — server is the dead socket — */
ACTIVE_SERVER = FALSE;
}
retum;
) /* — end sock_close.c — */

Appendix D

Mol ok o o kok

275

MR N e o ke

NAME;: cl_swop;5
TITLE: IC specific cl_swop

PARAMETERS:

read_sock : data_in

header : data_in
ACTIVE_SERVER : data_in

Sock : dala_in

LOCALS:

BODY:

I& T I———.
Source Code Filename: cl_swop.c
Special Considerations;: NONE
Purpose:

To determine which module should handle

the data incoming on the socket. This determination
is based on a select_op (switches) performed on

the header.maj_opcode and header.min_opcode
portions of the header.

Belongs to client application

-

/

*f

,t

cl_swop.c

Function: resolves the messages passed in from the server by using

opcodes to determine the required response

Variables: read_sock - socket on which to read and write
header - struc containing opcodes

Coded by: Michele Grieshaber

Date : 06/10/91

*/

/

L

—

#idefine _BSD

#define my_name “B-SPLINE TOOLKIT"
#define size_of_name 50

#include <stdio.h>

#include <sys/types.h>

#include <sys/socketvar.h>

#include <sys/socket.h>

#include <sys/uio.h>

#include <netinet/in.h>

#include <netdb.h>

#include ", /mysock2.h"

#include “‘/u/knight/show/execs/showtime.h"

/* — function declarations — */
void get_cl_list();

Appendix D

276

void send_name();

void relay_data_request();

void rcv_acsynt();

void req_attrib_list();

void relay_attrib_lisi();

void req_from_attrib_list();

void message(); /* message routine belonging to B-Spline wolkit */
/* — end function declarations — */

extern int Sock;
extern int ACTIVE_SERVER;

void ¢l_swop(int read_sock, HEADER header)

{

[* char my_name([] = “B-SPLINE TOOLKIT";*/ / name of the client */

int nval; /* retum code */
intnu=3,nw=3; /* parametric u and w values */

/* — starting switch on major opcode *f
switch(header.maj_opcode)
{
case(;
switch(header.min_opcode)
(
case Oz
f* the server is asking for information on the client to put— */
/* in a client_information structure */
send_name(read_sock, header) ;
break; /* — break min case 0 —*/

case 1:
break; /* — break for case 1 — */

case 2
* — get info from server and send to widget — */
get_cl_list{read_sock, header.size_in_bytes);
break; M — break for case 2 — */

} /* — end switch — */
break; * — end major case 0 —*/

case 1.
/* — starting switch on minor opcode for major case | ————— */
switch(header.min_opcode) .
{

case 0.

break;

case 1: /* case 1 under minor opcode is for the sender */

relay_data_request(read_sock);
break;

Appendix D

2M

case 2; /* case 2 under minor opcode is for the receiver */
break; * — end maj case I minorcase 2 —*/

case 3:
/* — request client_atiribute listing from server — */
req_attrib_list(read_sock);

break;

case 4:
req_from_attrib_list(read_sock);
break;
default:
message(“BAD INFORMATION FROM THE SERVER...", 1);
break; /* — end maj case 1 minor default — */
) /* end switch(min_opcode) */
/* — end minor opcode switch for major case 1 */
break; /* — end major case 1 — */

case 2:
switch(header.min_opcode)
{
case 0:
/* — update the widget with current info from server — */
update_widget{read_sock, header.size_in_bytes);
break;

case 1: /* case 2 under minor opcede is for the receiver */
rcv_acsynt(read_sock, header);
break; /* — end maj case 1 minor case 2 — %/

case 3:
relay_attrib_list(read_sock, header);
break;

} /* — end switch minor for major =2 — */
break;
defaule
message("BAD INFORMATION FROM THE SERVER...", 1);
break; /* end default for major opcode — */
}/* end switch(maj_opcode) */

/* — end major opcode switch
return;
} *—endcl_swop.c —*/

Appendix D

*/

278

N o ol

LL » RN

NAME: send_name;4
TITLE: IC send_name

PARAMETERS:
read_sock : data_in
header : data_in
LOCALS:

BODY:

Wl

,t._‘_____ﬂm_“ﬂm__
Source Code Filename: send_name.c

Special Considerations; Need to define client name
at the top of this program.

Separate modules of this

program are necessary for

each client for this reason.

Purpose:

To send the client application name to

the requesting socket (the server or the

GRIM widget)

Belongs to client application

#define _BSD

#idefine my_name “B-SPLINE TOOLKIT”
#define size_of_name 50
#include <sudio.h>
#linclude <sys/types.h>
#linclude <sys/socketvar.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <netinetfin.h>
#include <netdb.h>
#include ./mysock2.h”

/* — function declarations — */
void write_header();

void write_name();

extemn int ACTIVE_SERVER;

void send_name(int read_sock, HEADER header)
{

header.size_in_bytes = sizeof(my_name);

header.maj_opcode = 0;
header.min_opcode = 0;
if(tACTIVE_SERVER)

write_header(read_sock, header);

write_name(read_sock, my_name, sizeof(my_name));
} /* —end ACTIVE_SERVER — ¥/

Appendix D

*/

Sl sk ok ak kol ok

279

return;
} /* — end send_name.c — */

e e afc e e e 2 e ape mfe e a2 e 2 0 e o e o o

NAME: get_cl_list;4
TITLE: 1S get_cl_list

PARAMETERS:

read_sock : data_in
header.size_in_bytes : data_in
ACTIVE_WIDGET : data_in
Sock? : data_in

LOCALS: name

i

header

BODY:

o ——
Source Code Filename: get_cl_list.c
Special Considerations; NONE
Purpose:

To receive the members of a list containing
application names from the server, and 1o send the
list members on to the GRIM widget which belongs
to the client who has just received the information.
In the get_cl_list structure chart, write_sock
represents the GRIM widgeiqs socket, which is
called Sock2 in the source code.

Belongs to GRIM

#define _BSD

#include <stdio.h>
#include <sys/types.h>
#include <sys/socketvar.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <netinet/inh>
#include <netdb.h>
#include <sys/un.h>
#include . /mysock2.h”
#include “/u/knight/show/execs/showtime.h”
#define size_of_name 50

extemn int ACTIVE_WIDGET;
extern int Sock2;

void write_header();

void write_name();

char *read_name();

Appendix D

W a0 e o e M o e o e o o o oo e ak e sk

280

void get_cl_lisi(int read_sock, int size)
char *name;

inti;

HEADER header;

/* — only if the widget is active will this be performed — */

if (ACTIVE_WIDGET)
(

header size_in_bytes = size;
header.maj_opcode = (;
header.min_opcode = 2;
write_header(Sock2, header);
for (i = 0; i < size; i++)

* — send msg to widget telling it of incoming client_list — */

M*name = (char *)malloc(size_of_name);*/
* — read off info from the server — */
name = read_name{read_sock, name, size_of_name);
write_name = (Sock2, name, size_of_name);
} /* — end for size — */
} /* —end if ACTIVE_WIDGET — */

return;
} * —end get_cl_list.c — ¥/

NAME: relay,data_request;S
TITLE: IC relay_data_request

PARAMETERS:

read_sock : data_in
ACTIVE_SERVER : data_in
Sock : data_in

LOCALS: header

responder

requester

BODY:

”
Source Code Filename: relay_data_request.c

Special Considerations:

The variable requester must be defined

for every client in the integrated system, therefore, each
client must contain a version of this module with its name
defined (please note that this name must be identical to
the one given in the application exchange relation file.)

Appendix D

M e 0 e e e o e o g ok ok o

281

se:
To notify the application whose name was
chosen to be the supplier of buffer data for the
client of the impending request. In other words,
the client sending the request wants to receive
the buffer of the application chosen by the user.
The chosen application is called responder in
this function, since it is he who will respond
10 the request by providing the data.
Belongs to client application

R ——— =%

#define _BSD

#define requester *B-SPLINE TOOLKIT"
#idefine size_of_name 50
#include <stdio.h>
#include <sys/types.h>
#include <sys/socketvar.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <netinet/in.h>
#include <netdb.h>
#include *, /mysock2.h”

/* — function declarations — */
char *read_name();

void write_header();

void write_name();

extern int ACTIVE_SERVER;
extemn int Sock;

void relay_data_request(int read_sock)

(
HEADER header;
char *responder;

/* — read the name from the widget to send to server — */
responder = read_name(read_sock, responder, size_of_name);

/* — make sure server is active — */
if (ACTIVE_SERVER)
{
header.size_in_bytes = size_of_name;
header.maj_opcode = 1;
header.min_opcode = 1;
write_header(Sock, header);
write_name(Sock, responder, size_of_name);
write_name(Sock, requester, size_of_name);
) /* —end if ACTIVE SERVER — */

return;
} /* — end relay_data_request.c — */

Appendix D 282

NAME: req_attrib_list;5
TITLE: IC req_attrib_list

PARAMETERS:

read_sock : data_in
ACTIVE_SERVER : data_in
Sock : data_in

LOCALS: header

responder

requester

BODY:
,l__________________-___
Source Code Filename: req_attrib_list.c

Special Considerations:

Requester must be defined as the

name of the owning application in a define statement at
the top of this module, thus a unique module is needed
per client in the integrated system.

Purpose:

To relay the request registered at the clientgs

widget for the attribute list of the client called
responder. Responder is one of the applications

listed in the widgets exchange selection list,

Belongs to client application

*/

#define _BSD

#define requester “B-SPLINE TOOLKIT”
#define size_of_name 50
#include <stdio.h>
#include <sys/types.h>
#include <sys/socketvar.h>
#include <sys/socket.h>
#finclude <sys/uio.h>
#include <netinet/in.h>
#linclude <netdb.h>
#include *../mysock2.h”

/* — function declarations — */
void write_header(};

void write_name();

char *read_name();

extern int Sock;

extern int ACTIVE_SERVER;

void req_attrib_list(int read_sock)

(
HEADER header;
char *responder;

Appendix D

e

LEX L2 2221]

283

/* — send request for attribute list to server -— */
header.size_in_bytes = (;

header.maj_opcode = 1;

header.min_opcode = 3;

/* — read name of client from the widget signal — */
responder = read_name(read_sock, respondet, size_of_name);

/* — relay this info to the server — */
write_header(Sock, header);
write_name(Sock, requester, size_of_name);
write_name(Sock, responder, size_of_name);

return,
} /* — end of req_attrib_list.c — */

S 3 g o e o e o 3 e o b o ol e o o e o o o o 2 oo o o o oo e e g o o e e e e o oo a0 o e e e o o o o R ok Rk

NAME: req_from_attrib_list;4
TITLE: IC req_from_attrib_list

PARAMETERS:
read_sock : data_in
Sock : data_in
LOCALS: responder
requester

list_num

header

BODY:

,‘
Source Code Filename: req_from_attrib_list.c
Special Considerations:

Requester must be defined as

the name of the owning application, therefore each
client in the integrated system needs o modify
this file to contain his name in requester.

Purpose:

To request data as a function of an item

from the attributes list. The auribute list

was supplied in a previous request from a client

in the integrated system, and this request is
directed 1o that client, known in this function

as responder.

Belongs to client application

#define _BSD
#define requester “B-SPLINE TOOLKIT"

Appendix D 284

#define size_of_name 50
#include <stdio.h>
#include <sys/types.h>
#include <sys/socketvar.h>
#include <sys/socket.h>
#linclude <sysfuio.h>
#include <netinet/in.h>
#include <neiwdb.h>
#include “./mysock2,h”

/* — external functions — */
char *read_name();

void write_header();

void write_name();

extern int Sock;

void req_from_autrib_list(int read_sock)
(

char *responder;

int list_num;

HEADER header;

* — define and write header 1o server — */
header.size_in_bytes = (;
header.maj_opcode = 1;
header.min_opcode = 4;
write_header(Sock, header);

/* — read the source name from widget and send to server — */
responder = read_name(read_sock, responder, size_of_name};
write_name(Sock, responder, size_of_name);

/* — send your name to the server — */
write_name(Sock, requester, size_of_name);

/* — read the component number and send to server — */
if(read(read_sock, &list_num, sizeof(int)) < 0)

perror(“rfal: reading component number™);
exit(1);

}

if (write(Sock, &list_num, sizeof(int)) < 0)

(
perror(“rfal: write component number");
exit(1);

)

returm;

) /* — end req_from_atirib_list.c — */

Appendix D

285

N o e e o e Ll L1 LA L EL LS Neak e

NAME: update_widget;4
TITLE: IC update_widget

PARAMETERS:
header.size_in_bytes : data_in
read_sock : data_in
ACTIVE_WIDGET : data_in
Sock2 : data_in

LOCALS: i

header

name

BODY:

,ll
Source Code Filename: update_widget.c

Special Considerations: NONE

Purpose:

To send the name of a client who has

just connected to the server, or disconnected, to

the widget. The widget updates his selection list

of exchange clients by either adding the name {in

the case of a connect) or deleting it (disconnect).

The name is accompanied by an ADD or DELETE flag.

Belongs to client application

*/
#define _BSD

#include <stdio.h>

#include <sys/types.h>

#include <sys/socketvar.h>

#include <sys/socket.h>

#include <sys/uio.h>

#include <netinet/in.h>

#include <newdb.h>

#include <sys/un.h>

#include “,/mysock2.h”

#idefine size_of_name 50

void write_header();

void write_name{);

char *read_name(};

extern int Sock2;

extern int ACTIVE_WIDGET;

void update_widgei(int read_sock, int action)
{

int i;

char *name;

HEADER header;

/* — perform only if the widget is active — */

Appendix D 286

if (ACTIVE_WIDGET)
(
/* — read off the new client list and send to widget — */
name = read_name(read_sock, name, size_of_name);
header.size_in_byles = action;
header.maj_opcode = 2;
header.min_opcode = 0;
write_header(Sock2, header);
write_name(Sock2, name);
} /* —end if ACTIVE WIDGET — %/

retumn;
)} /* — end update_widget.c — */

L1] 00 a0 e e o e e e 2 e e o e s o o e e o o e o oo 2 o M0 20 o e a3 3 ol e e 2 M 0 e e e e 3 o e e o o ol e ok

NAME: receive_buffer;11

TITLE: IC specific read_buffer

PARAMETERS:
read_sock : data_in
header : data_in
LOCALS:

BODY:

Ill
Source Code Filename: to be determined
Special Considerations: NONE

Purpose:

‘This module is one which is entirely

client dependent. Each client in the integrated
system must provide a module to receive buffer
data sent by other clients in the system to

the server - where the data is transformed into
the format read into this module by the client.
Included in this m-spec is a sample module
called rcv_acsynt.c which is used by the
B-Spline Toolkit to receive buffer data

from ACSYNT.

Belongs to client application

*/

#idefine _BSD

#define size_of_name 50
flinclude <stdio.h>
#include <sys/types.h>
#include <sys/socketvar.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <netinet/in.h>

Appendix D 287

#include <netdb.h>
#include “./mysock2.h”

/* — function declarations — */
void model_read();
void after_read();

void rcv_acsynt(int read_sock, HEADER header)

(
int nu = 3, nw = 3; /* parametric u and w values */

/* — the data sent across from the server in this case

is in the form of a linked list of Model data structures.

This portion of the program must ciean up an old Model

if it exists, then proceed to place the information on

the socket into the Mode! linked list which is used to
contain the geometry in the B-Spline Toolkit ————— */
/* — read the info from the socket — */
model_read(read_sock,header.size_in_bytes);

M* — compute tangents and draw geometry — */
after_read(nu.nw);

return;
} /* — end rcv_acsynt.c — ¥/

model_read.c
Function: receives model elements from the server and reads them
into the Model structure for the B-Spline Toolkit .
Variables: read_sock - socket on which to read from server
number_of_models- number of components server sends
Coded by: Michele Grieshaber
Date : 06/10/91
*/
/
¥ s s S EE S SRS e S e e e TR SR e */
#define _BSD
#include <stdio.h>
#include <sys/types.h>
#include <sys/socketvar.,h>
#include <sys/socket.h>
#include <sys/uio.h>
#include *./mysock2.h”
#include “/u/knight/show/execs/showtime.h”
#include *“/u/knight/show/subdivide/intersect.h”

void clean_upQ;
extern MODEL *Model;

Appendix D 288

void model_read(int read_sock, int number_of_models)
(

intrc; /* retum code */

intii, i, j, k;

intnp=3,nw=3; /* rendering parameters */

static int name_size = 21; /* size of component name fields */
comp_data *component, *newcomp; /¥ pts to component structures */
float pt1, pt2, pt3; /* point info from server */

/* — the server will be sending a stream of information containing

a linked list of model structures ... the size represents

the number of model structures contained in the list ————— */
clean_up();

/* —— Initialize Structure IDgs 1o Zero
Model->acs_root = -1;
Model->nubs_root = -1;
Model->fillet_root = -1;
Model->int_root = -1;
Model->intlist = (intersection *)NULL;
Model->num_comp = number_of_models;
for(ii = 1; ii <= number_of_models; ii++)
{
——— allocate space for new component ——————/
newcomp = (comp_data *)malloc(sizeof{comp_data));
if(ii ==1)

*

Model->comp = newcomp;
} else {

component->next = newcomp;
)
newcomp->existance = 1; /* set existance to yes */
newcomp->nu = nu; /* inilialize rendering */
NEWCOMP->Nw = NW;

/* —— Read in Component Information *f
rc=read(read_sock,newcomp->comp_name, name._size);
if(rc < 0)
{

perror(“read_model: read comp name *);

exi(1);
)
rc=read(read_sock,&(newcomp->comp_number),sizeof(int));
if(c<0)
{

perror(read_model: read comp number”);

exit(1);
}
re=read(read_sock,&(newcomp->color),sizeof(int));
if(rc < 0)
(

Appendix D 289

perror(**read_model: read comp color™);

exit(1);
)
rc=read(read_sock,&(newcomp->acs_ncross),sizeof(int));
if(c <0)

perror(“read_model: read acs_ncross™);

exit(1);
}
rc=read(read_sock,&(newcomp->acs_npts),sizeof(int));
if(rc < 0)
{

perror(*read_model: read acs_npts™);

exit(1);
)

fod Allocate Array for hermite points ———— %/
newcomp->acs_pis = (float ***)calloc(newcomp->acs_ncross,
sizeof(float **));

newcomp->acs_utan = (float ***)catloc(newcomp->acs_ncross,
sizeof(float **));

newcomp->acs_wtan = (float ***)calloc(newcomp->acs_ncross,
sizeof(float **));

for (i=0;i < newcomp->acs_ncross ; i++)

{

newcomp->acs_pis[i] = (float **)calloc(newcomp->acs_npts,

sizeof(float *));
newcomp->acs_utan[i] = (float **)calloc(newcomp->acs_npts,
sizeof(float *));
newcomp->acs_wian(i] = (float **)calloc(newcomp->acs_npts,
sizeof(float *));

for (j =0 j < newcomp->acs_npts ; j++)
{
newcomp->acs_pis[il(j] = (float *)calloc(3,sizeof(float));
newcomp->acs_utan[i][j] = (float *)calloc(3,sizeof (float));
newcomp->acs_wtan[i][j} = (float *)calloc(3,sizeof(float));
) /*—endforj—*/
)} * —end fori—*/

/* ——Readin pointdata——————— %/
for (i=0;i < newcomp->acs_ncross ; i++)

for (j=0; j < newcomp->acs_npts ; j++)
rc = read(read_sock, &(newcomp->acs_pts[il(j1[0]),
sizeof(float));
if(rc <0)
{
perror(“model_read: reading pis”);

rc = read(read_sock,&(newcomp->acs_pts(il(jl[1]).

Appendix D 290

sizeof(float));
if(rc<0)

(
perror(“model_read: reading pts™);

)

rc = read(read_sock,&(newcomp->acs_pts[il{jl[2]),
sizeof(float));

if (rc<0)

({

perror(“model_read: reading pts”);
)
}/*—endforj—*
}/* —endfori—*/
component = newcomp; ™ reset pointers */
} /* — end for ii — */

component->next = (comp_data *)NULL; M set last pointer to NULL */
return;
} /* — end model_read — */

/
. *»* /
r*
after_read.c
Function: after Model information is read from the server, the
tangents are computed and the hermite geometry is
drawn
Variables: nu - parametric variable in u direction
. nw - parametric variable in w direction
Coded by: Michele Grieshaber
Date : 06/10/91
*/
/
e ee e e e ———————— *f
#include <sudio,h>

#include “/u/knight/show/execs/showtime.h”

/* — function declarations — */

void message(); /* — all of these external funcs are in B-spline module. Not included in this code — */

void draw_hermite();
void acs_tangents();
/* — end function declarations — */

extern MODEL *Model;
void after_read (int nu, int nw)

(
/* — with the model structure full oth things must be done — */

acs_tangents(Model); /* calculate hermite tangents */

/* — draw the wireframe geometry — */
message(“DATA TRANSFER FROM SERVER SUCCESSFUL", 1);

Appendix D

291

message("CREATING WIRE FRAME GEOMETRY...", 1);
draw_hermite(Model,nu,nw);

return;
} /* — end afier_read — */
/
L
!t
clean_up.c
Function: checks to see if a current model exists and cleans it
out if one does

Memory allocation is performed for the Model .
Variables: none at the moment
Coded by: Michele Grieshaber
Date : 06/10/91
*/
/

* S —— */

#include <stdio.h>
#include “/u/knight/show/execs/showtime.h”

e EE oo */

/* — function declarations — */
void clean_model();

void message();

M — end function declarations — %/

extern MODEL *Model;

void clean_up{)
(
/* — check to see if current model is full — */
if(Model != NULL)
{
message("CLEANING UP OLD MODEL",1);
clean_model(Model); /* clear out old Model */
} /* —end if Model — */

/* — allocate memory for the model — */
Model = (MODEL *)malloc(sizeof(MODEL));

return;
} /* —end clean_up —*/

Appendix D 292

L1 30000 2 o o e o e g o e o [LY E]

NAME: relay_atrib_list;4
TITLE: IC specific relay_attrib_list

PARAMETERS:
read_sock : data_in
header : data_in
LOCALS:

BODY:

,‘.
Source Code Filename: (o be determined

Special Considerations: NONE

Purpose:

This module is responsible for passing

members of an attribute list sent by another
client in the system to his GRIM widget. The
structure of the module is entirely dependent

on the corresponding module in the server,
which in turn is dependent on the way in which
the client sending the list outputs its data.

As an example, a module used to by the B-Spline
Toolkit to relay the attribute list sent by
ACSYNT is included in this m-spec.

Belongs to client application

*

#define _BSD

#define size_of_name 50
#include <stdio.h>
#include <sys/types.h>
#include <sys/socketvar.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <netinet/in.h>
#include <netdb.h>
#include <sysfun.h>
#include *./mysock2.h”

/* — function declarations — */
void write_header();

void write_name();

char *read_name();

extern int Sock2;

void relay_attrib_list(int read_sock, HEADER header)
{

int i;

int comp_num;

char *comp_name;

char *responder;

char *requester;

Appendix D

o0 0 o 2 o e o e e o e s e e e o ok

293

int size_of_compname = 21;
/* — relay this information to the widget — */
/* header is the same as it was from the server .., size_in_bytes = ncomps
+. maj_opcode =2
... min_opcode = 3
*/

write_header(Sock2, header);
requester = read_name(read_sock, requester, size_of_name);

/* — read responding clientqs name and send it to the GRIM — */
responder = read_name(read_sock, responder, size_of_name);
write_name(Sock2, responder, size_of_name);

for(i = 0; i < header.size_in_bytes; i++)

if (read (read_sock, &comp_num, sizeof(int)) < 0)
{
perror(* make_att_l; reading comp_num™);
exit(1);
}

/* — wrile comp num to grim — */
if (write(Sock2, &comp_num, sizeof(int)) < 0)
{
perror(“'relay_att_list: writing comp_num");
exiy(1);
}

/* — write the word component to grim — */
comp_name = read_name(read_sock, comp_name, size_of_compname);
write_name(Sock2, comp_name, size_of_compname);

} /* — end for ncomps — */

free(comp_name);
free(responder);

free(requester);

return;

} /* —end relay_attrib_list.c —*%/

Appendix D

294

L] L 1 0 o e e e a2 e o o 2 2 o o ol a2 o o o o K ok

NAME: respond_to_buffer;9
TITLE: IC specific respond_to_buffer

PARAMETERS:
read_sock : data_in
header : data_in
LOCALS:
BODY:
II
Source Code Filename: 10 be determined
Special Considerations: NONE
Purpose:
This module is responsible for responding
to a request for the current buffer data of the
application, The module will send datato a
module in the server which will read in the data
in the order it was sent from this module, and
transform it, before sending it, into the format
of the receiving client. Please note that the
header information set in this module is very
important as it will enable the server to
determine which module will accept this
buffer information.
This module is highly application dependent and
will be written on a case-by-case basis. As an
example, the module respond_to_buffer.c which is
part of the ACSYNT integrated client is included
in this m-spec, It is suggested that the header
defined in this example be used, unless a new
minor opcode is defined and carried through
for communication with the server and receiving
client.
Belongs to client application
= */

#define _BSD

#define size_of_name 50
#include <stdio.h>
ffinclude <sysftypes.h>
#include <sys/socketvar.h>
#include <sys/socket.h>
#linclude <sys/uio.h>
#include <netinet/in.h>
#include <netdb.h>
#include “./mysock2.h"”

void acs_hermite();
char *read_name();

void respond_to_request(int read_sock)

Appendix D

295

(

char “request_name;

/* — responds to the servergs appeal for data — */

/* — read the requestergs name off of the socket — */

request_name = read_name(read_sock, request_name, size_of_name);
acs_hermite(read_sock, request_name);

return;

} /* — end resp_to_bspline.c — */
fag ——ER === =*/
#define _BSD

#idefine size_of_name 50

#finclude <stdio.h>

#include <sysftypes.h>

#include <sys/socket.h>

#include <sys/socketvar.h>
#include <sys/uio.h>

#include <errno.h>

#include “./mysock2.h”

/* — function declarations for RS/6000 — */
void gtgmpk();

void gticmp();

void wr_herm();

void mid_herm();

void acs_hermite(int read_sock, char *requesier_name)

(

inti, j;
int icomp, /* — counter for components — */
erT, /* — error return code — ¥/
ncomps, /* — number of components in model — */
comps[150], /* — array of component numbers — */
glob, /* — global flag — */
newnum, /* — update component number for glob sym — */
gsym, ¥ — global symmetry — */
comnum; mr—1—%
static int nglob = 14;
HEADER header; * — header used for protocol send to svr — */

/* — get the component list — */
(void) gtgmpk(&ncomps, comps);

/* — compensate for additional components if global symmetry exists — %/
Newnum = ncomps;
for (icomp = 0; icomp < ncomps ; icomp++)
{
(void) gticmp(&nglob, &comps[icomp), &glob, &err);
/* — check for global symmetry ~— */
if(glob!=0)

Appendix D

296

{

newnum += I;

}

} /* —end for icomp — %/

/* — write out header to send to server — */
header.size_in_bytes = newnum;
header.maj_opcode = 2;

header.min_opcode = 1;

if(write(read_sock, &header, sizeof(HEADER)) < 0)
(

perror(“acs_hermite: writing header™);

exit(1);
)

/* — send back the requesterqs name — */
if (write(read_sock, requester_name, size_of_name) < 0)
(
perror{“acs_hermite: writing requester name");
exit(1);
}

/* — initialize the starting component number — */
comnum = 1;

/* — loop through the components — */
for (icomp = {); icomp < ncomps ; icomp++)
{

mid_herm(read_sock, comps[icomp]);
} /* — end for icomp — */

return;
)} /* — end acs_hermite — */

”
#define _BSD

#idefine size_of_name 50

#include <stdio.h>

#include <sysftypes.h>

#include <sys/socket.h>

#include <sys/socketvar,h>

#include <sys/uio.h>

#include <ermo.h>

#include *./mysock2.h"

/* — function declarations for RS/6000 — */
void gticmp();

void gtccmp();

void ckhmls();

void getint();

void trancd();

void rshmls(Q);

Appendix D

*

297

void gtsmmu();
void v13(};
void wr_herm();

void mid_herm(int read_sock, int comp_num)
{

inti, j;

int icomp,

nxsect,

nppxs,

err,

dummy,

ncomps,
comps[150],
locsym,

glob,

newnum,

gsym,

comnum;

float pt_list[30]{30)(3],
gsymmt[4][4] ,
newpts[30)(30)(3};
float po[3],

pil3%;

static int nxsitm = 5,
nppitm = 6,

ngsym = 14,

nglob = 14;

/* — get the number of x-secs for the component — */
(void) glicmp{&nxsitm, &comp_num, &nxsect, &err);

/* — get the number of poinis per x-sec — */
(void) gticmp(&nppitm, &comp_num, &nppxs, &em);

* — check for local symmetry in the component — %/
(void) ckhmls(&comp_num, &locsym);

/* — get the points of the component — */
(void) getint (&comp_num, &nxsect, &nppxs, pt_list);

/* — reset the local symmetry of the component — */
(void) rshmis(&comp_num, &locsym);

/* — transform the coordinates of the points — */
{void) trancd(&comp_num, &nxsect, &nppxs, pt_list);

for (i=0; i <nxsect; i++)

for (j = 0; j < nppxs ; j++)
{

Appendix D

298

} * —endforj—*/
) /*—endfori—*/
/* — invert the ordering of the points so the normals face out — */
for (i =0; i < nxsect; i++)

for (j = 0; j < nppxs ; j++)
(

newpts(j][il[0] = pt_list{nppxs-j-11[i][0];
newpts(jl[il(1] = pt_list[nppxs-j-1][i][1};
newpts[jl(i)[2] = pt_listinppxs-j-11[H1[2]};
) —endforj—*/
}/*—endfori—*/

/* — write the component data o the server — */
wr_herm(read_sock, comp_num, ncomps, nxsect, nppxs, newpts ,&comnum);

/* — get hte global symmetry flag for the component — */
gticmp(&ngsym, &comp_num, &gsym, &err);
i{f« gsym >= 1) & (gsym <= 3))

/* — get the global symmetry matrix — */
(void) gtsmmt(&gsym, gsymmt);

/* — get the point to be transformed — */
for (i =0; i < nxsect; i++)

for { j = 0; j < nppxs; j++)

pil0] = pt_list[j] (i}{0];
pill] = pt_list[j](i(1];
pil2] = pt_list[j](i}{2];

* — ransform the point — */
(void) vt3(&pi[0).&pi[1],&pil2],gsymmt,&po[0),&po[1).&po[2]);

f* — get the transformed points — */
pt_list[j][i1[0] = po[0};
plist[jl[il(1] = po[1);
ptlist[j](i)[2) = po[2];
} /¥ —endforj—*/
} * —endfori—*/
/* call routine 1o write all this wonderful information to server */
wr_herm(read_sock,comp_num,ncomps, nxsect,nppxs,pt_list,&comnum);
} /* —endif gysm — ¥/
retumn;
} /* — end mid_herm.c — */
¥ =====—===ssus=s=—scsoscomoooooosoooossssssssssssssssssonnEnasse s oo *f
#define _BSD
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/socketvar.h>

Appendix D 299

#include <sysfuio.h>
#linclude <ermo.h>
#include . /mysock2.h”

/* — function declarations for RS/6000 — */
void gtcemp():

void wr_herm (int read_sock, int comp, int ncomps, int nxsect, int nppxs,
float pt_list[][30][3], int *comnum)
{

int dummy;

inti, j;

int color,

eI,

static int nxsitm = 5,
clim=11,

one=1;

char comp_name[21];

/* — get the component name — */

/* bzero{(char *Jcomp_name, sizeof(comp_name));*/
for(i=0;i<20; i+)

(

comp_nameli] ="'";

comp_name[20] = \O';

/* — get the component name for each component — */
(void) giccmp(&one, &comp, comp_name, &err);
if (write(read_sock, comp_name, sizeof(comp_name)) < 0)
{

perror{“acs_hermite: write comp name");

exit(1);
)

/* — write the component number — */
if (write(read_sock, comnum, sizeof(int)) < 0)
(
perror(“acs_hermite: write comnum™);
exit(1);
)

/* — get the component color — */
(void) gticmp(&clitm, &comp, &color, &err);
if (write(read_sock, &color, sizeof(int)) < 0)
{
perror(“acs_hermite: write color™);
exit(1);
}

Appendix D

300

/* — write the number of x-secs for the component — */
if (write(read_sock, &nxsect , sizeof(int)) < 0)
{
perror(“acs_hermite: write nxsect *');
exit(l);
)

/* — write the number of points per cross section ~ */
if (write(read_sock, &nppxs , sizeof(int)) < 0)
(

perror{“*acs_hermite: write nppxs “);
exit(h);

}

/* — write out the list of points — */
for (i = 0; i < nxsect; i++)

for (j = 0; j < nppxs; j++)

{
if(write(read_sock, &pt_list[j}[i][0], sizeof(float)) < 0)
{

perror(“wr_herm: write pt_list (\n");
exit(1);

}
if(write(read_sock, &pt_list[j][i](1], sizeof(float)) < ()
(

perror(“‘wr_herm: write pt_list 1\n");

exil(1);

)
if(write(read_sock, &pt_list[jl[i]{2], sizeof(float)) < 0)
{

perror{"wr_herm: write pt_list 2\n");
exit(1);
)
) —endforj—*/
} ™ —endfori—"/

/* — icrement comnum — */
*comnum +=1;

return;
} ¥ —end wr_herm.c — %/

Appendix D

301

NAME: give_altrib_list;4
TITLE: IC give_attrib_list

PARAMETERS:
header : data_in
read_sock : data_in
LOCALS:

BODY:

/‘
Source Code Filename: to be determined
Special Considerations: NONE

Purpose:

This module is responsible for supplying

an attribute list to send to clients in the
integrated system which request one. The order
and form in which this list is sent is important,
for it is how the server will read the data and
subsequently send it on to the requesting client.
This module is application dependent and will
be written on a case-by-case basis. Asan
example, the module give_attrib_list.c which

is included in the ACSYNT client application
is included in this m-spec. Please note the
relationship of the header definition with

the server and subsequently the servergs
header definition for transmission of this

data 1o the responding client.

Belongs to client application

*/

#define _BSD

#idefine my_name “ACSYNT"
#define size_of_name 50
#include <stdio.h>
#include <sys/types.h>
#include <sys/socketvar.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <netinet/in.h>
#include <netdb.h>
#include “./mysock2.h”

/* — function declarations — */
void write_header();

void write_name();

char *read_name();

void gtgmpk(;

void give_attrib_list(int read_sock)
{

Appendix D

e e shr e e ol o o e o o e e e o

302

HEADER header; /* — header for protocol msg to server — */

int ncomps; /* — number of components in model — */
int icomp, /* — counter for components — */
comps[150]; /¢ — array of component numbers — */
char *requester; /* — name of requesting client ~— */

char *responder; /* — name of responding client — */

char cname[] = “geometric component™;
int size_of_compname = 21;

J* — determine the current components of the mode!l displayed — */
/* — get the component list — */
(void) gigmpk(&ncomps, comps);

/* — set up header — */
header.size_in_bytes = ncomps;
header.maj_opcode = 2;
header.min_opcode = 3;

/* — write header to the server — */
write_header(read_sock, header);

/* — read requesting clientgs name off of the socket — */
requester = read_name(read_sock, requester, size_of_name);
write_name(read_sock, requester, size_of_name);

/* — read responding clientqs name off of the socket — */
responder = read_name(read_sock, responder, size_of_name);
write_name(read_sock, responder, size_of_name);

for (icomp = 0; icomp < ncomps ; icomp++)

/ ¥ — write the component number — */
if (write(read_sock, &comps[icomp), sizeof(int)) < 0)

perror(“give_a_L: write icomp™);
exit(1);
)
write_name(read_sock, cname, size_of_compname);
} /* — end for icomp — ¥/

free(requester);

free(responder);

return;

} /* — end give_attrib_list.c — */

Appendix D 303

NAME: respond_attrib_item;7
TITLE: IC specific respond_attrib_item

PARAMETERS:
read_sock : data_in
header ; data_in
LOCALS:

BODY:

Fid
Source Code Filename: to be determined

Special Considerations: NONE

Purpose:

This module is responsible for furnishing

data as a reply (o a request from a client who

has sent a list item identifier from his attribute
Iist, If an attribute list exists for an application,

s0 must a module to handle the task of passing
item related data to a requesting client.

As an example, the module respond_attrib_item.c
which belongs to the client application ACSYNT
is included in this m-spec. Special attention
should be paid to the header definitions, since

the server uses them to determine the module
which will relay this information to the client.
Belongs to client application

= */
#define _BSD

#idefine size_of_name 50
#include <stdio.h>
#include <sysftypes.h>
#include <sys/socketvar.h>
#include <sys/socket.h>
#linclude <sysfuioh>
#include <netinet/in.h>
#include <netdb.h>
#include “,/mysock2.h”

/* — external functions — */
char *read_name();

void write_header();

void write_name();

void gticmp();

void respond_attrib_list(int read_sock)
(

int comp_num;

HEADER header:

char *requester_name;

int gsym,

Appendix D

e 0 0 o ol o o e o o e o e o o o o o e o e e ol e o

304

err;
static int ngsym = 14;

/* - read requesiergs name and send it later— */
requester_name = read_name(read_sock, requester_name, size_of_name);

/* — read the component number — */
if (read(read_sock, &comp_num, sizeof(int)) < 0)
{
perror(“ral: reading comp_num");
exit(1);
}

/* — check if this component has global symmetry — */
(void) gticmp(&ngsym, &comp_num, &gsym, &err);

if (gsym 1= Q)
{

header.size_in_bytes = 2;
) else {

header.size_in_bytes = 1;
)

/* — set up header and send it — */
header.maj_opcode = 2;

header.min_opcode = 1;

write_header(read_sock, header);
write_name(read_sock, requester_name, size_of_name);

/* — send component number to only chose that one — */
mid_herm(read_sock, comp_num);

return;
} /* — end repond_attrib_list.c — */
M= S T T SR S S e ae e T e e e e ey e sy i

midherm.c is contained in the respond_to_request module spec which appears before this m-spec.

[¥===========cmzmzsszzc—mco—m=== = ==*/

Appendix D

305

Appendix E

306

7 Xrpuaddy

LOg

Server

|_updale
nhme
9 besder
write_sock
i 9 write_sock
- hesder Dame_size
on re_naine
'ﬁ;h_m $e1_header write_Beader write_name
nafne

80¢

g xpuaddy

resolve_header;4

No tide

resolve
header
read sock
header™ sad_sock @
sock_struc 0
header read
sock ™
sock_ strucq
A loek_
. struc
header.lal heeder
" A

sock_strik
hedler—.
road "~
header.maj header.
opcode_! opcode
header.jin headet.ntin_
' opcode_

9 header.size_In_byles
sock_struc ? sock_struc
o read sock |o read sock

put_ci;2
No title

9 header
Z read_sock

sock_struc

put_cl

actlon

name_size L

e

sock_struc 6

9 name_size

9 sock _struc

read_name

of_list

write_sock

name

0,

sock_siruc

widget_
update

ompare_nsme
In_xchg_struc

see_who_needs

sot_header

9 header

9 wrile_sock

Appendix E

write_header

q name

Q wrile_sock

name_size

write_name

309

det_list;1
No title

Q read_sock

9 sock_struc

det _list

Q, read_sock

Q hame
Q, sock_struc

determine_nam
_of_requesting

send_cl_list
_cllent

read_sock
Ca client_names
_for_xchg
O

possible_xchg_ posslbie_xchg
client_names ent_hames P

df}’;mr_‘i'gh.;n e & header header

match_clients_

from_xch
relationships

Appendix E

determine_if
_cllent_curr bulld header wiite_header th:_name
__connected -

310

request_data;3

No tide
uest
it
read_sock
header
gsock_clrue
request_da
responder
ey
read_sock requester
L Ou respond_sock
name_size S head Os name_size
0 ame_slze o
read_sockR / respond header
requester O d respond
sock_s - respond
read_nam A ey —sook
fild_l‘llmH sock_dast bulld_luad+ wvlle_hnd"

Appendix E

write_nam

in

q xipuaddy

[43

request_atlrib list;2
No title

request_atirib
_list

q xpuaddy

£ig

m_atirib
_list

read sock ?

sock_struc 9

uest_from_
attrib_iist

uild_header

request_from_attrib_list;2
No title

transfer_1;2
No title

transfer_1

9 header

9 sock_struc

? read_sock
A4

transfer_1

Appendix E 314

relay_attrib_list_s;1
No title

y_
attrib_
list_s

9 header

9 sock_struc

Q read_sock

relay_attrib_
list_s

Appendix E 315

NAME: serv;4
TITLE: IS main module

PARAMETERS:
LOCALS:
BODY:

,* i
Source Code Filename: serv.c

Special Considerations: NONE

Purpose: main program of the integraion server.

Establishes listening socket to accept connections

from integration clients
Belongs to integration server

p—

serv.c
Function: starts the server portion of the integrated system
Variables: none at the moment
Coded by: Michele Grieshaber

Date : 06/10/91

*/

/

* e == */
#include <stdio.h>

#include “./mysock2.h”

#define Port 2000 ‘

#define filename “exchange._buds”

/* — supporting subroutines ./

void sock_ear(};

void set_sel(;

void init_xchg();

f* ——— end supporting subroutines ./

main ()

{

SOCK_INFO *sock_struc; /* structure containing socket data */
* — zero the sock structure — */

bzero{(char *)&sock_struc, sizeof(sock_struc));

/* — set the num_socks 1o zero — */

sock_struc = (SOCK_INFO *)malloc(sizeof{SOCK_INFO));
sock_struc->num_socks = 0;

/* — initialize the exchange data structure — */
init_xchg(filename);

Appendix E 316

J* — create socket on which to listen — */
sock_ear(Port, sock_struc);

* — set the select on — */
set_sel(sock_struc);

} /* end main */

0030 o e e e e ol el o ool ol ok ok ok

NAME: init_xchg;6
TITLE: IS init_xchg

PARAMETERS:
filename : data_in
xchg_struct: data_out
num_xchgs : data_out

LOCALS:
in_file
charac

BODY:

e ——
Source Code Filename: init_xchg.c

Special Considerations: NONE

Purpose:

To initialize the xchg_struct which contains a

list of all relations which exist in the integrated system.
This structure is checked against the structure containing

the client names of the connected applications to determine

which will receive the name of the newest client in the
system for use his list of clients from whom data

can be requested.

Belongs 1o integration server

ey,

=%/

#include <stdio.h>
#include “./mysock2.h”

XCHG_STRUCT *xchg_struct;
int num_xchgs;

void init_xchg(char *filename)
{

FILE *in_file;

int i, j;

char charac[1];

Appendix E

317

if{(in_file = fopen(filename, “r")) == (FILE *) NULL)
{

printf(“‘open_file: could not find file %s\n”, filename);
} else {
fscanf(in_file, "NUMBER OF EXCHANGES IN FILE = %d\n", &num_xchgs);

xchg_struct = (XCHG_STRUCT *) malloc (sizeof(XCHG_STRUCT) * num_xchgs);

for (i = 0; i < num_xchgs; i++)

(
fscanf(in_file,"nSENDER = %[*/] %c\n",xchg_struct[i].sender, charac);
fscanf(in_file,”"RECEIVER = %[*/] %c", xchg_struct[i].receiver, charac);
} /* — end for i to num_xchgs — %/
} /* —end if fopen — */

return;
} * — end init_xchg —*/

o e e o

] Wk sk L Lt 2 a2 e o o e o e 0

NAME: sock_ear;4

TITLE: No title

PARAMETERS:
Port ; data_in
sock_struc : data_in

LOCALS:
Sock
server
one

name

BODY:
,*
Source Code Filename: sock_ear.c

Special Considerations; NONE

Purpose:

To create a socket to listen for connections
from clients in the integrated system.
Belongs to integration server

/

*

*

ook ok ok

*

™~
sock_ear.c
Function: opens a socket on which to listen for incoming connections
from clients wishing to join the integrated system.
Variables: Port - well known location of the server
sock_struc - structure containing socket information

Appendix E

318

Coded by: Michele Grieshaber
Date : 06/10/91

*/

/

*® o

*/

#idefine _BSD

#include <stdio.h>
#include <sys/types.h>
#tinclude <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <sys/fioctl.h>
#include <errno.h>
#include *../mysock2.h”

/* —— supporting routines */
void sock_I();

SOCK_INFO *cl_list(;

/* —— end supporting routines

*/

sock_ear(int Port, SOCK_INFO *sock_struc)

{

int Sock; /* socket on which listening occurs */
struct sockaddr_in server; /* server intermet information */
staticintone = 1; /* set as a constant */

char name[] = “listening socket”; /* for the client list in sock_struc */

* — open socket to listen on and use a stream connection — */
Sock = socket(AF_INET, SOCK_STREAM.0);
if (Sock < 0)
{
perror(“server:socket™);
exit(-3);
)

/* — clear the server structure — */
bzero{(char *)&server, sizeof(server));

/* — initialize the server structure — */
server.sin_family = AF_INET;
server.sin_port = Port;

/* — set the socket so that it is reuseable — */
if (setsockopt(Sock,SOL_SOCKET,SO_REUSEADDR,&one,sizeof(one)) 1= 0)
{

perror(*'setsockopt™);
}

/* — bind the Sock to the server ./
if (bind(Sock,&server sizeof(server)) < 0)
(

Appendix E

319

perror(*‘server:bind™);
exit(-3);

)

/* — add the socket to the sock_list — */
sock_1(Sock, sock_struc);

/* — add the server to the client list — ¥/
sock_struc = cl_list(sock_struc, name, sizeof(name));

return;
) /* end sock_ear */

e e 2 0 3t o s 3 e o 390 3 ol o o o o g ol e e ek ol

*

NAME: sock_l:6
TITLE: IS sock_1

PARAMETERS:
listening_sock : data_in
sock_struc : data_in

LOCALS:
BODY:

f il z=m=w
Source Code Filename: sock_l.c

Special Considerations; NONE

Purpose:

To add a socket to the portion of the socket
information structure, sock_struc, which contains
socket descriptor information (sock_struc.sock_list).
Belongs to integration server

———

/
*.
~
sock_lc
Function: adds the most recently connected socket to the socket

listing inside the SOCK_INFO structure (sock_struc).

Variables: new_sock - socket descriptor of connected sock
sock_struc - structure into which new_sock goes
Coded by: Michele Grieshaber
Date : 06/01/91
*/
/
- = */
#include <stdio.h>

#include “./mysock2.h”

Appendix E 320

sock_I(int new_sock, SOCK_INFO *sock_struc)
{

/* — add new socket to list — */
sock_struc->num_socks += 1;

/* — add the sockel to the socket array — */
sock_struc->sock_list[sock_struc->num_socks - 1] = new_sock:

return;
) * —endsock_lc —*/

vvvvvvvvvv » 2000 0 o oo o o o o e o e e 2 e e e e 3 e afe e s e o e e ol o o o o 3 oo ol ok ok ok e o

NAME: cl_list;7
TITLE: IS cl_list

PARAMETERS:
sock_struc : data_out
sock_struc : data_in
socket_name : data_in
name_size : data_in

LOCALS:
size

BODY:
”
Source Code Filename: cl_list.c
Special Considerations: NONE
Purpose:
To add an application name to the portion of
the socket information structure, sock_struc, which
contains client name (sock_struc.client_name).
This enables the server (o associate a client name
with a corresponding socket descriptor in the
sock_struc. This allows cross referencing to occur,
meaning if the client name is known, so is the socket
descriptor, and vice-versa.
Belongs to integration server
P R T P */
/
W e e e e e e s e ===ss====="*/
,ll
cl_list.c
Function: places the name retumed by the client in the client
list portion of the SOCK_INFO structure (sock_struc)
Variables: sock_struc - structure containing socket info

e

Appendix E 321

name - name of the connected client

size_of_name - size of the clientgs name
Coded by: Michele Grieshaber
Date : 06/10/91
*/
/

| S ‘I

#define _BSD

#include <stdio.h>
#include <ermo.h>
#include *./mysock2.h”

SOCK_INFO *cl_list(SOCK_INFO *sock_struc, char name[], int size_of_name)

(
static int size = 20: /* size of character array */

/* — add the name of the current socket to the client_list — %/
/* — clear out the array entry — */
bzero{(char *)sock_struc->client_list[sock_struc->num_socks-1], size);
sprintf(sock_struc->client_list[sock_struc->num_socks-1],
“%s”, name);

return({sock_struc);
} /* —end cl_list.c —*/

Rl w bk LAl

NAME: set_sel;6
TITLE: No title

PARAMETERS:
sock_struc : data_in
LOCALS: read_mask
to

i

rc

Isock
emo
BODY:

" m=mme=
Source Code Filename: set_sel.c

Special Considerations: NONE

Purpose:

To set the read mask to contain all known sockets

in the integrated system, and then to check for incoming
signals on these sockets. If no signal occurs the process
repeats itself. When a signal does register its socket

Appendix E

e afe ke » (331

322

is determined in eval_sel.c.
Belongs to integration server

/

* ==z w=*f

”

set_sel.c

Function: sets the select mode on for the server Lo screen incoming
connections

Variables: sock_struc - structure containing socket info

Coded by: Michele Grieshaber

Date ; 06/10/91

*/

/

* e e */

#define _BSD

#define TRUE 1

#define FALSE 0

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#finclude <sysftime.h>

#include <netinet/in.h>

#include <netdb.h>

#include <ermo.h>

#include “./mysock2.h”

/* — supporting routines — */
void is_eval_sel();

fd_set set_mask();

* — end supporting routines — */

void set_sel(SOCK_INFO *sock_struc)
{

fd_set read_mask; /* mask which filters sockets for reading */
struct timeval to; /* time structure for select timeout */

inti, rc; /* rc is the return code variable */

int Isock; /* product of a socket sort — largest sock*/
extern int ermo; /* error number for debug purposes */

listen(sock_struc->sock_list[0], 5); /* set the listening sock (o listen */

do

{ .
/* — compare the mask against alf available sockets — %/
/* — also keep track of the largest socket value for later use */
/* — but to do that, set sock initially o zero */

Isock =0;

read_mask = set_mask{&lsock, sock_struc);
/* — set the timeout values for the select — */
bzero{(char *)&to, sizeof(to));

Appendix E 323

to.tv_sec = 5;

/* — hang out in the select — */
rc = select(lsock+1, &read_mask, (fd_set *)0, (d_set *)0, &to);
if(rc < 0)

perror(“select™);
continue;
Jelseif (c>0) {
/* — evaluate the response to select if any — */
is_eval_sel(sock_struc, read_mask);
} P —endifrc —*/

)} while(TRUE);

return;
} /* — end set_sel — */

L ks Rk ke ke LAl L ek M o0 e o e o o ol e e e o e o ol ek 2 o ok

NAME: is_eval_sel;5

TITLE: IS is_eval_sel

PARAMETERS:
read_mask : data_in
sock_struc : data+control_in

LOCALS:
BODY:

F
Source Code Filename: is_eval_sel

Special Considerations; NONE

Purpose:

Once an incoming signal has been detected,

this function determines on which socket it occurred
and either accepts a new connection (listening socket)
or sends it on to have the HEADER resad by another
routine {any other socket besides the listening sock).
Belongs to integration server

*

/

*- e s s s - et S * /
F
is_eval_sel.c
Function: evaluates the value of the read mask returned from the
select call in set_sel.
If the signal comes in on the listening socket, the
client is requesting to be accepted for connection by

Appendix E 324

the server.
If the signal comes on a socket that has already been
established (accepted), the header is read by cl_rdmsg
and appropriate action is taken,

Variables: sock_struc - structure containing socket info

read_mask - indicates which sockets have info on
them.

Coded by: Michele Grieshaber

Date : 06/10/91

*/

/

»®

#define _BSD

#define TRUE 1
#define FALSE 0
#include <stdio.h>
#include <sysftypes.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb,h>
#include <sysfioctl.h>
#include <fentl.h>
#include <sys/file.h>
#include <signal.h>
#include <sys/select.h>
#include <ermo.h>
#include “./mysock2.h”

*/

Fl

* — supporting routines — */
void rd_msg(;

void ask_msg();

void new_sock_info();

/* — end supporting routines — */

eval_sel(SOCK_INFO *sock_struc, fd_set read_mask)

{

int new_sock; /* new socket accepted by the server */
inti; /* just your ordinary everyday integer */
struct sockaddr_in sin; /* structure containing client ip stuff */
imt length = sizeof(sin); /* lenght of above structure */

/* — check to see if the read_mask matches any of the available sockets —*/
if(FD_ISSET(sock_struc->sock_list{0], &read_mask))
(
/* — accept the new connection — */
if{(new_sock = accept(sock_struc->sock_list[0],&sin,&length)) < Q)
{
perror(“Server:accept™);
exit(-3);
}

/* — add new socket to the sock_list — */

Appendix E 325

/* — send a message to the newly connected client to get his name
for incorporation into the client list contained in the server — */
new_sock_info(new_sock, sock_struc);

) else {
/* — check the other connected sockets one at a time for info — */
for(i = 1; i < sock_struc->num_socks; i++)
{
if (FD_ISSET(sock_struc->sock_list[i], &read_mask))
{
/* — read message on socket — */
rd_msg(sock_struc->sock_list[i], sock_struc);

}J/* —end if —*/
}* —end for —*/
}* —endif —*/
retun;

} /* —end is_eval_sel.c — ¥/

e 2% 3 S 3 30 4 ihe 2 20 30 2l 3 28 2B 3 b sk e sbe s 2wk 2br ol e e ol e b o e 2 [—

TITLE: IS new_sock_info

PARAMETERS:
new_sock : data_in
sock_struc : data_in

LOCALS:

BODY:

M ==—====m—r=a===== =====
Source Code Filename: new_sock_info.c

Speciat Considerations: NONE

Purpose:

To request the application name from the

application who has just recently connected to

the server,

....-._-___...*/

#include <stdio.h>
#include “./mysock2.h”

void sock_J();
void ask_msg(Q);

void new_sock_info(int new_sock, SOCK_INFO *sock_struc)
(

/* — put new sock into socket structure — */
sock_l(new_sock, sock_struc);

Appendix E

e o e e e e e s e s e oo e e sk o

326

* — request client name from new client as an identifier — */
ask_msg(sock_struc);

returm;
}/* --- end new_sock_info --- */

- 0 WHN M o2 o 2 2 3 M M W o o o oo o o e

NAME: ask_msg:4

TITLE: 1S ask_msg

PARAMETERS:
new_sock : data_in
sock_struc : data_in

LOCALS:
header
w_sock

BODY:
l‘r R ———
Source Code Filename: ask_msg.c
Special Considerations: NONE
Purpose:
To request the name of the application
who has just connected to the server.
Belongs to integration server
e Emee———— s */
/
¥ e=TEum */
"
ask_msg.c
Function: to ask the newly connected clients for information on
themselves that can be placed in a client list located

in the SOCK_INFO strucutre for later use .
Variables: sock_struc - structure(SOCK_INFQ) with sock info
Coded by: Michele Grieshaber
Date : 06/10/91
*/
/

#define _BSD

#idefine TRUE 1

#define FALSE 0

#linclude <stdio.h>
#include <sys/types.h>
#include <sys/socketvar.h>
#include <sys/socketh>

*l

Appendix E 327

#include <sys/uio.h>
#include <ermo.h>
#linclude “../mysock2.h"”

[* — external function calls — */
void write_header();
* — end extemnal functions — */

ask_msg(SOCK_INFO *sock_struc)

{

HEADER header; /* contains size and major and minor opcode info */
int w_sock; /* socket 1o which message is sent */

header.size_in_bytes = 0;
header.maj_opcode = 0;
header.min_opcode = 0;

1* — send this info to the socket correspondinf 10 ACSYNT — */
w_sock = sock_struc->sock_list[sock_struc->num_socks - 1];
write_header(w_sock, header);

retum;
} /* —end ask_msg.c —*/

vvvvvvvvvvvvvvvvv e S s e e s e e o e o e bl ale ol o o o e o e e

NAME: rd_msg;4
TITLE: IS rd_msg

PARAMETERS:
read_sock : data_in
sock_struc : data_in

LOCALS:
nval
header

BODY:
/t
Source Code Filename: rd_msg.c

Special Considerations: NONE

Purpose:

If the signal is of a normal type, to read

a headers worth of data from the socket, and if
the signal is a disconnect, to close the socket
which corresponds to the disconnecting client.
Belongs to integration server

T — t/

Appendix E

328

& "

3

rd_msg.c
Function: reads the header from the information coming in on a
socket.
Header info then sent to a routine which does a switch
on the major and minor opcodes contained in the header.
Variables: read_sock - socket on which info is waiting
sock_struc - structure containing socket info
Coded by: Michele Grieshaber
Date : 06/10/91
*/
/
¥, *I
#idefine _BSD
#define TRUE 1
#define FALSE 0
#include <stdio.h>
#include <sysftypes.h>
#include <sys/socket.h>
#tinclude <sys/socketvar.h>
#include <sys/uio.h>
#include <ermo.h>
#include *./mysock2.h”

/* — supporting routines — */
void sw_op();

void close_sock();

/* — end supporting routines — */

rd_msg(int read_sock, SOCK_INFO *sock_struc)
{

int nval; /* return code from read */
HEADER header; /* header read from the socket. Contains info */
/* such as size of info on socket, major opcode */
/* and minor opcode */

/* — read the header from the information sitting on the socket — */
nval = read(read_sock, &header, sizeof(HEADERY));

if(nval = -1)

{
perror(“rd_msg; rcad”);
exit(1);

} else if(nval = 0) {
/* — go to routine to close connection and take socket out of list - */
close_sock(read_sock, sock_stnic);

} else {
/* — send to sw-op to determine action associated with opcode — */
sw_op(header, sock_struc, read_sock);

} A —endif —*/

Appendix E 329

return;
) * —endrd_msg.c—*/

* [}]

NAME: close_sock;4
TITLE: IS close_sock

PARAMETERS:
read_sock : data_in
sock_struc : data_in

LOCALS:
ij
action

BODY:

/* e
Source Code Filename: close_sock.c
Special Considerations: NONE

Purpose:

To delete a closed socket from the array
of sockets in the socket information socket.
Belongs to integration server

= *f

Wk kK

*/

I*=m=m==== —
/* close_sock.c

Function: deletes a socket from the socket list when a client is
closed.

Arguments: int dead_sock — socket that has been closed
SOCK_INFO *sock_struc — structure containing number of

sockets and the socket list

Coded by: Michele Grieshaber

Date : 06/05/91

*/

*/

14

#include <stdio.h>
#include *./mysock2.h”
#define ADD 1

#define DELETE 0

void widget_update();

close_sock(int dead_sock, SOCK_INFO *sock_struc)
{

int i

int action;

Appendix E

330

/* — loop thru socket list to find entry which matches dead socket — */

for (i = 0; i < sock_struc->num_socks; i++)

if(sock_struc->sock_list]i] == dead_sock)

{

* — before deleting it from the list, send delete msg o widget—*/

action = DELETE;

widget_update(action, sock_struc->client_listfi], sock_struc);

for(j = i; j < (sock_struc->num_socks - 1); j++)

{

sock_struc->sock_list[j] = sock_struc->sock_list[j+1);

} /* —end for j — */
i = sock_struc->num_socks;
sock_struc->num_socks -= 1;
} /* —- end if dead_sock — */
}*—end fori—*/

return;
} /* — end close_sock.c — */

NAME: widget_update;5
TITLE: IS widget_update

PARAMETERS:
action : data_in
name ; data_in
sock_struc : data_in

LOCALS:
BODY:
r*

e e e e e oo afe e e ade e e

Source Code Filename: widget_update
Special Considerations: NONE

Purpose:

To determine which clients need to be
informed that a client in their selection list
has disconnected from the integrated system.
Belongs to integration server

*/

#idefine _BSD

#idefine TRUE 1

#define FALSE 0
#idefine size_of_name 50
#define ADD 1

#define DELETE 0
#include <stdio.h>

Appendix E

33

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sysfuio.h>
#include <ermo,h>
#include *./mysock2.h”
#define size_of_name 50

extern XCHG_STRUCT *xchg_struct;
extern int num_xchgs;

void write_header();

void write_name();

void widget_update(int action, char *name, SOCK_INFO *sock_struc)
{

intigj;

intn=0;

HEADER header;

header.size_in_bytes = action;
header.maj_opcode = 2;
header.min_opcode = 0;

/* — match the new name against senders in the xchg_struct — */
for (i = 0; i < num_xchgs; i++)

if(strcmp(xchg_structfi).sender, name) == 0)
for(j = 1; j < sock_struc->num_socks; j++)
if(stremp(xchg_struct[i}.receiver, sock_struc->client_list[j])==0)
/* — send the new name to the client interested — */
write_header(sock_struc->sock_list{j], header);
write_name(sock_struc->sock_list[j], name, size_of_name);
} * — end if soemp receiver — */
}* —endforj—*/
} /* — end strcmp sender — */
}/* —endfori—*/

retum;
)} * — end widget_update.c — ¥/

Appendix E

332

el b o o ok ok Ok

NAME: resolve_header;6
TITLE: IS specific resolve_header

PARAMETERS:
header : data_in
read_sock : data_in
sock_struc : data_in

LOCALS:
BODY:
”
Source Code Filename: resclve_header.c

Special Considerations; NONE

Purpose:

Based on the major opcode portion of the

header (header,maj_opcode) and then on the minor
opcode portion of the header (header.min_opcode),
this module will determine how (o evaluate each
message received by a socket of the server.

Belongs 1o integration server
i+

/

~
resolve_header.c
Function: based on the major and minor opcodes contained in the
header structure passed in from the rd_msg routine,
this routine (using switch statements) will determine
the appropriate action to take
Variables: header - contains size and maj and minor opcodes
sock_struc - structure containing socket info
read_sock - socket on which information resides
Coded by: Michele Grieshaber
Date : 06/10/91
*/
/

W ot e

#idefine _BSD
#define TRUE 1

#define FALSE 0

#define size_of_name 50
#define ADD 1

#define DELETE 0
#include <stdio.h>
#include <sys/types.h>
f#tinclude <sys/socket.h>
#include <sys/socketvar.h>
#include <sysfuio.h>
#include <ermo.h>

Appendix E

333

#include “. /mysock2.h"”

/* — supporting routines — */
SOCK_INFO *put_cl(};

void det_listQ;

void request_data();

void acsynt_to_bspline();

char *read_name();

void write_name();

void write_header();

void request_attrib_listQ;

void relay_attrib_list_sQ;

void request_from_attrib_list();
/* — end supporting routines — */

resolve_header(HEADER header, SOCK_INFO *sock_struc, int read_sock)
(
/* -—— begin major opcode swiich */
switch(header.maj_opcode)
(
case 0
/* — begin minor opcode switch for major case 0 ——————*/
switch(header.min_opcode)
{
case 0;
/* — read client name and send 1o client list — */
sock_struc = put_cl(read_sock, header, sock_struc);
break;

case 1:
* — gives list of exchange requests to client — */
/* — determine the client who requested info — */
det_list(read_sock, sock_struc);

break;

case 2:
break;

default:
printf(“resolve_header: not a valid minor opcode\n™);
break;
) /* — end switch(min_opcode) — */
/* — end minor opcode switch for major case 0 */
break;

case 1:
switch(header.min_opcode)
{

case 0;
break;

case 1:

Appendix E 334

request_data (read_sock, header, sock_struc);
break;
case 3:

request_attrib_list(read_sock, sock_struc);

break;
case 4:
request_from_attrib_list(read_sock, sock_struc);
break;
default

printf(“resolve_header: not a valid minor opcode for major = 1\n™);
break;

} * — end switch minor for major=1 — %/
break;

case 2;

switch(header.min_opcode)
(

case 0:
break;

case 1:
acsynt_to_bspline(read_sock, header, sock_struc);
break;
case 3:
relay_attrib_list_s(read_sock, sock_struc, header.size_in_bytes);
break;
default

printf(“resolve_header: not a valid minor opcode for major = 2n™);
break;

} /* — end switch min_opcode for case major = 2 — */
break;

default:

printf(*‘resolve_header: not a valid major opcode \n");
break;

}/* — end switch(maj_opcode) — */
[* — end major opcode switch

*/
return;
) /* — end resolve_header.c — */

Apperdix E

335

TTTTTTTTTTTTTT o o e o e e o s oo o ok o ook ok ok ok ok

NAME: put_cl;6
TITLE: IS put_cl

PARAMETERS:
header : data_in
read_sock : data_in
sock_struc : data_inout

LOCALS:
name
action

BODY:

’l —
Source Code Filename: put_cl.c
Special Considerations: NONE
Purpose:

To read in the name of an application who

is responding to the request generated after

its connection has been accepted by the server.
The name is sent to all clients in the system

to whom it can supply data.

Belongs to integration server

#define _BSD

#define ADD 1

#include <stdio.h>
#include <sysftypes.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/uio.h>
#include <ermo.h>
#include *./mysock2.h™

/* — supporting routines — */
SOCK_INFO *cl_list);

char *read_name();

void widget_update();

SOCK_INFO *put_cl(int read_sock, HEADER header, SOCK_INFO *sock_struc)
{

char *name;
int action;

iftheader.size_in_bytes > 50)

336

f* — read client name from the msg on socket from client — */
name = read_name(read_sock, name, header.size_in_bytes);

/* — add client name to list kept by server —*/
sock_struc = cl_list(sock_struc, name, header.size_in_bytes);

/* — send name to clients which can use it in widget — */
aclion = ADD;

widget_update(action, name, sock_struc);

free(name);

returm(sock_struc);
} /* —end put_clc —*/

Lt LA b, Ll b,

NAME: det_list;5
TITLE: IS det_list

PARAMETERS:
read_sock : data_in
sock_struc : data_in

LOCALS:

BODY;

I‘ -+ ——+ 4
Source Code Filename: det_list.c

Special Considerations: NONE

Purpose:

To compile a list of exchange clients to

send to a client requesting the list. He needs
to know from whom he can request data in the
integrated system,

Belongs to integration server

*/

#include <stdio.h>
#include “./mysock2.h”

/* — external function calls -— */
void send_cl_list();
/* — end external functions — */

void det_lisy(int read_sock, SOCK_INFO *sock_struc)
(

int i

/* — gives list of exchange requests to client — */

/* — determine the client who requested info — */

Appendix E

e b e e e 2o o oo oo s e e oo o s o sl e e e o e o ol ool oo e o o o e e e e o o o s s

337

for (i = 1; i < sock_struc->num_socks; i++)
if(sock_struc->sock_list[i] == read_sock)

send_cl_list(read_sock, sock_struc->client_list[i],
sock_struc);
i = sock_struc->num_socks;
} * — end if read_sock — */
} /* — end for num_socks — */

retumn;
} /* —end det_list.c — %/

- *® dedk ok

NAME: send_cl_list;5
TITLE: IS send_cl_list

PARAMETERS:
read_sock : data_in
name : data_in
sock_struc : data_in

LOCALS:

BODY:

* mesmmme———
Source Code Filename: send_cl_list

Special Considerations: NONE

Purpose:

Used by the server to compile a list

of exchange client names and send them to

the requesting client,

Belongs to integration server

==z==z=z== %/
#define _BSD

#define TRUE 1

#define FALSE 0

#include <stdio.h>
#include <sysftypes.h>
#linclude <sys/socket.h>
#include <sys/socketvar.h>
#include <sysfuio.h>
#include <ermo.h>
#include “../mysock2.h”
#include <string.h>

extern XCHG_STRUCT *xchg_struct;
extern int num_xchgs;

Appendix E

e e e o o oo ool ek ok

338

void write_header();
void send_cl_list(int sock, char client_name[}, SOCK_INFO *sock_struc)
{

int ij;

intn=0;

HEADER header;

struct list {
char list_item[80];
struct list *pl;

} *xchg_list;

/* — match up the client name with the xchg list — */
for (i = 0; i < num_xchgs; i++)

if(stremp(xchg_struct[i].receiver client_name) == 0)

/* — need to check the match against connected clients — */
for (= 1; j < sock_struc->num_socks; j++)

if(stremp(xchg_struct{i}.sender, sock_struc->client_list[j]) == 0)
if(n==0)

(
xchg_list = (struct list *)malloc(sizeof(struct list));
} else {
xchg_list->pl = (struct list *) malloc(sizeof(struct list));
xchg_list = xchg_list->p1;
}
bzero((char *)xchg_list->list_item, 80); \
sprintf(xchg_list->list_item, *%s”, xchg_struct[i).sender);
xchg_list->pl = NULL;

n+=1;
} /* —end if strcmp — */
} /* —end for —*/

} /* — end if stremp — ¥/
} /* — end for num_xchgs — */

/* — build a message to send to the client containing info — */
header.size_in_bytes = n; /* — indicates the number of infos — */
header.maj_opcode =0;

header.min_opcode = 2;

write_header(sock, header);

for(i=0;i<n;i++)

[if(write(sock, xchg_list->list_item, 50) < 0)
l perror(“‘sendl: write header *);

exit(1);
)

Appendix E 339

xchg_list = xchg_list->pl;
}

return;
) /* — end send_cl_list — */

20 3e o e 2 i M 3 5 o e 2 0 o0 o ae b e a0 o e o e age e e e e o e 2 s L L. o e o e e o ade e o ol e o ol ade o e b o ol o ol e kol

NAME: request_data;4
TITLE: 1S request_data

PARAMETERS:
read_sock : data_in
header : data_in
sock_struc : data_in

LOCALS:
responder
requester
respond_sock

BODY:
/¥ =—======cz==—cm===e
Source Code Filename: request_data.c
Special Considerations: NONE

Purpose:

To relay the request for buffer data from

the requesting client to the responding client.
Belongs to integration server

S ——— *I

#define _BSD

#define size_of_name 50
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/uio.h>
#include <ermo.h>
#include “../mysock2.h”

/* — supposting routines — */
char *read_name();

void write_name();

void write_header(};

int sock_det();

void request_data(int read_sock, HEADER header, SOCK_INFO *sock_struc)
{

Appendix E

340

char *responder, *requester;
int respond_sock;

/* — read info from client on requested data exchange — */

responder = read_name (read_sock, responder, header.size_in_bytes);

/* — read the name of the application requesting data — */
requester = read_name(read_sock, requester, header.size_in_bytes);

/* — determine the socket upon which requested comms — ¥/
respond_sock = sock_det(responder, sock_struc);

/* — request info be sent from requested client — */
header.size_in_bytes = 0;

header.maj_opcode = 3;

header.min_opcode = 1;
write_header(respond_sock, header);

/* — send it the requesterqs name — */
write_name(request_sock, requester, size_of_name);
free(requester);

free(responder);

returmn;
} /* — end request_data.c —*/

Ak ok

NAME: sock_det;4
TITLE: IS sock_det

PARAMETERS:
responder : data_in
respond_sock : data_out

LOCALS:
i
next_sock

BODY:

I* ———=====
Source Code Filename: sock_det.c
Special Ceonsiderations: NONE
Purpose:

To determine a socket identifier based
on the connected applicationgs name.
Belongs to integration server

Appendix E

====== ¥/

e e oK ok e ok

341

#include <stdio.h>
#include “../mysock2.h”
#define TRUE 1
#define FALSE 0

int sock_det(char *name, SOCK_INFO *sock_struc)
{

inti;

int next_sock;

/* — determine the socket number that corresponds to the name — */
for (i = 1; i < sock_struc->num_socks; i++)

if(strcmp(sock_struc->client_list[i], name)} = 0)
{
next_sock = sock_struc->sock_list[i];
i = sock_struc->num_socks;
)
)

return{next_sock);
} /* — end sock_det.c — */

e aje o e e e ok ok

e s o 3 3 o e o e o s ol e 3 ok

NAME: request_attrib_list;4
TITLE: IS request_attrib_list

PARAMETERS:
read_sock : data_in
sock_struc : data_in

LOCALS:
header
response_sock
responder
requester

BODY:
/*
Source Code Filename; request_attrib_list.c

Special Considerations: NONE

Purpose:

To request the attribute list from the

responding client.

Belongs to integration server

T — t,
#idefine _BSD

Appendix E

342

#define size_of_name 50
#include <stdio.h>
#include <sys/types.h>
#include <sys/socketvar.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <netinet/in.h>
#include <netdb.h>
#include “../mysock2.h™

/* — function declarations — */
void write_header();

void write_name();

char *read_name();

int sock_det();

void request_attrib_list(int read_sock, SOCK_INFO sock_struc)
{

HEADER header;

int response_sock;

char *responder;

char *requesier;

* — for now get the component list from the client and send it on — */
header.size_in_byles = (;

header.maj_opcode = 3;

header.min_opcode = 3;

* — read the requesterqs name — */
requester = read_name(read_sock, requester, size_of_name);

/* — read next client name from requester — */
responder = read_name(read_sock, responder, size_of_name);
response_sock = sock_det(responder, sock_struc);

write_header(response_sock, header);
write_name(response_sock, requester, size_of_name);
write_name(response_sock, responder, size_of_name);

free(responder);
free(requester);

return;
) /* — end request_attrib_list.c — ¥/

Appendix E

343

e o o0 o o o a0 e e o o ol o s o e g ok ol

NAME: request_from_attrib_list;6
TITLE: IS request_from_attrib_list

PARAMETERS:
read_sock : data_in
sock_struc ; data_in

LOCALS:
responder
requester
respond_sock
list_num
header

BODY:

fad =rmmmmme
Source Code Filename: request_from_attrib_list.c
Special Considerations; NONE

Purpose:

To request a specific list item from the

attribute list previously supplied by the responding
client.

Belongs to integration server

=z== */

#idefine _BSD

#define size_of_name 50
#include <sudio.h>
#include <sys/types.h>
#include <sys/socketvar.h>
#include <sys/socket.h>
#include <sys/nio.h>
#include <netinet/in.h>
#include <netdb.h>
#include “./mysock2.h”

f* - external functions — */
char *read_name();

void write_header();

void write_name();

int sock_des();

void request_from_attrib_list(int read_sock, SOCK_INFO sock_struc)
{

char *responder, *requester;

int respond_sock;

int list_num;

HEADER header;

f* — read source name — */

Appendix E

344

resonder = read_name(read_sock, responder, size_of_name);
requester = read_name(read_sock, requester, size_of_name);

/* - determine the socket for source — */
respond_sock = sock_det(respond_name, sock_struc);

/* — define and send header — */
header.size_in_bytes = 0;
header.maj_opcode = 3;
header.min_opcode = 4;
write_header(respond_sock, header);

/* — write the requester id — %/
write_name(respond_sock, requester, size_of_name);

/* — read the component number identifier and send it — ¥/
if (read(read_sock, &list_num, sizeof(int)) < 0)

(
perror(“reading list_num™);
exit(1);

)

if (write(respond_sock, &list_num, sizeof(int)) < 0)
{

perror(“write list_num”);

exit(l);

)

return;
} /* — end request_from_attrib_list.c — */

L ¥

e e ae o e oy

NAME: transfer_1;6
TITLE: IS specific transfer_1

PARAMETERS:
header : data_in
sock_struc : data_in
read_soc : data_in

LOCALS:

BODY:
T
Source Code Filename: to be determined
Special Considerations: NONE

Purpose:

This is just one example of where the
transformation functions need to be in the

Appendix E

LS LR T

345

server. This location corresponds to the
B-Spline Toolkit/ACSYNT example where the
transformation function acsynt_to_bspline

is found. As an example, that module will

be included in this m-spec.

Belongs to integration server

=== === */
#define _BSD

#define size_of_name 50

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/socketvar.h>

#include <sys/uio.h>

#include <ermo.h>

#include “../mysock2.h”

/* — supporting routines — */
int sock_det();

void from_acs_to_b();

char *read_name();

void write_name();

void write_header();

void acsynt_to_bspline(int read_sock, HEADER header, SOCK_INFO *sock_struc)
(

char *name;

int j, request_sock;

int ncomps;

/* — receive the name of the application requesting — */
name = read_name(read_sock, name, size_of_name);

* — receive data from ACSYNT for xfer to B-SPLINE — */
ncomps = header.size_in_bytes;

/* — set new header, except for header.size_in_bytes which is ncomps — */
header.maj_opcode = 2;

header.min_opcode = 1;

request_sock = sock_det(name, sock_struc);

write_header(request_sock, header);

/* do this for the number of components that exist —— */
for (j =0; j < ncomps; j++)
{

from_acs_to_b{read_sock, request_sock);
) /* —end forj—*/
free(name);
retum;
} /* — end acsynt_to_bspline.c — */

Appendix E 346

*f

from_acs_to_b.c

Function: receives information from the ACSYNT module and passes
it directly to the B_Spline Toolkit
Variables: read_sock - socket on which info is being read
write_sock - socket which is being wrillen to
Coded by: Michele Grieshaber
Date : 06/10/91
*
/

*/

* T e e e et e e e e e e S P S S i St St

#define _BSD

#idefine TRUE 1

#define FALSE 0
#linclude <stdio.h>
#include <sysftypes.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/uio.h>
#include <errno.h>
#include “./mysock2.h”
I *

char *read_name();
void write_name();

void from_acs_to_b(int read_sock, int write_sock)
{

char *comp_name,

inti, j, k;

int comp_number,

color,

rc!

nxsect,

nppxs;

static int size_of_name =21,

float pt; /* points describing the component */

/* — read and write comp name */
comp_name = read_name(read_sock, comp_name, size_of_name);

write_name(write_sock, comp_name, size_of_name);
/* — read and write component number — */
rc = read({read_sock, &comp_number, sizeof(int));
ifrc <)
{
perror(“from_acs_to_b: read comp_number\n™);
exit(1);
)

Appendix E

347

if(write(write_sock,&comp_number,sizeof(int)) < 0) /* send num of comps*/
{

perror(“fatb; write comp_number *);

exit(1);
)

/* — read and write component color — */
rc = read{read_sock, &color, sizeof(int));
if(rc < 0)
{
perror(*“from_acs_to_b: read color\n");
exit(1);

if(write(write_sock,&color,sizeof(int)) < 0} /* send comp color ¥/
{

perror(“fatb: write color™);

exit(1);

)

/* — read and write number of cross sections — */
rc = read{read_sock, &nxsect, sizeof(int));
if(rc < 0)
{
permror(“from_acs_to_b: read nxsect\n™);
exit(1);

if(write(write_sock.&nxsect, sizeof(int)) < 0) /* send x_sec num*/
{

perror(“‘fath: write nxsect”™);

exit(1);
}

/* — read and write number of points per x section — %/
rc = read(read_sock, &nppxs, sizeof(int));
if(rc < 0)
{
perror(“from_acs_to_b: read nppxs\n”);
exit(1);

if(write(write_sock,&nppxs, sizeof(int)) < 0) /* send pis/x_sec */

{

perror(“fatb: write nppxs™);

xit(1);
}
f* — read and write point data — */
for (i = 0; i< nxsect; i++)
{

for(j = 0; j < nppxs; j++)

(

for(k=0; k < 3; k++)

Appendix E

348

rc = read(read_sock, &pt, sizeof(float));
if(rc <0)
{
perror("from_acs_to_b: read pt");
exit(1);
}

if(write(write_sock, &pt, sizeof(float)) < 0)
{
perror(“from_acs_to_b: write pt™);
exit(1);
)
J M —endfork—¥f
} /¥ —endforj—*/
} /* —end fori—*/
retumn;
} /* —end from_acs_to_b—*/

bt wENy L oy

NAME: relay_attrib_list_s;5
TITLE: IS specific relay_attrib_lisi_s

PARAMETERS:
header.size_in_bytes ; data_in
sock_struc : data_in
read_sock : data_in
LOCALS:

BODY:

> ===
Source Code Filename: to be determined
Special Considerations: NONE

Purpose:

This module is the server version which
relays a list of attributes sent from one client,

to another.

This module is dependent on the application, and must
be written for each client sending an attribute

list to other clients in the system. The structure

of this module is entirely dependent on the way

in which the client sending the list, transmits

his data.

As an example, the module relay_attrib_list.c,

which is part of the server library related to

the B-Spline ToolkilYACSYNT relationship, is
included in this m-spec.
Belongs to integration server

— W

Appendix E

e o a2 2 o e

349

#idefine _BSD

#define size_of_name 50
#include <stdio.h>
#include <sys/types.h>
#include <sys/socketvar.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <netinet/in.h>
#include <netdb.h>
#include *. /mysock2.h”

* — function declarations — %/
void write_header();

void write_name();

char *read_name();

int sock_det();

void relay_atrib_list_s(int read_sock, SOCK_INFO *sock_struc, int ncomps)
(

int i;

char *comp_name;

int size_of _compname = 21;

char *requester;

char *responder;

int request_sock;

HEADER header;

int comp_num;

/* — read requesting and responding clientgs name — */
requester = read_name(read_sock, requester, size_of_name);
responder = read_name(read_sock, responder, size_of_name);

/* — determine the requesting socket number — */
request_sock = sock_det(requester, sock_struc);

header.size_in_bytes = ncomps;

header.maj_opcode = 2;

header.min_opcode = 3;

write_header(request_sock, header);
write_name(request_sock, requester, size_of_name);
write_name(request_sock, responder, size_of_name);
/* — loop thru reads for the number of components *f
for (i = 0; i <ncomps ; i++)

if (read (read_sock, &comp_num, sizeof(int)) < 0)
{
perror(" relay_att_l: reading comp_num™);
exit(1);
)

Appendix E 350

if (write(request_sock, &comp_num, sizeof(int)) < 0)

perror(“relay_att_I: writing comp_num”);
exit(1);
)

comp_name = read_name(read_sock, comp_name, size_of_compname);
write_name(request_sock, comp_name, size_of_compname);
)} /* — end for ncomps — */

free(requester);
free(responder);
free(comp_name);

return;
} /* — end relay_attrib_list_s.c — */

Appendix E 351

Appendix F 352

This appendix contains miscellaneous files and utilities necessary for complete
understanding of the integration system. One important note is on the directories in
which each component of the prototype integration system was developed. This
information may be necessary when studying the source code of the components. The
source code is located in the module specifications found in the each component's

appendix. The components and their directories are:

integration server /u/michele/grim/server
ACSYNT client application /u/michele/grim/acsynt
ACSYNT GRIM widget (grim2) /u/michele/grim/grim2
B-Spline client application /u/michele/grim/apsock
and /u/michele/grim/execs
B-Spline GRIM widget (grimmy) /u/michele/grim/grimmy
Utlity functions /u/michele/grim/utility

Included in this appendix are the scripts necessary to run the two prototype clients, a
sample relations file which is used by the server to define data exchange possibilities,
and a header file called mysock2.h which contains data structures used by all

components of the integration system.

Appendix F 353

™ ====-s=ceszs=s========"*/

This is the RACS exec

This is the exec which will start the B-Spline Toolkit Client.

It will start the GRIM widget (grimmy) in the background, sleep a few seconds, then invoke the B-Spline
Toolkit using acsnubs as the executable.

i P —— ﬁl

! T ——

Jgrimmy/grimmy &
slezp 3
Jacsnubs

™ T=SEsmames *f
This is the RACSYNT exec

This is the exe¢c which will start the ACSYNT Client.

It will start the GRIM widget (grim2) in the background, sleep a few seconds, then invoke ACSYNT using
acsynt as the executable.

Y
[

*/

Ii
H

Jgrimmy2/grim2 &
sleep 3
Jacsynt

Appendix F 354

I, */

7
This file contains typedefs used in the integration client and server.

CODED BY: Michele Grieshaber
DATE: May 28, 1991

MH=========c====c== s T

typedef struct {
int size_in_bytes;
int maj_opcode;
int min_opcode;
} HEADER;

typedef struct {

int num_socks;

int sock_list[20];

char client_list[502[50];
} SOCK_INFO;

typedef struct |
char sender[50];

char receiver[50];
) XCHG_STRUCT;

typedef struct list_type {
char list_item[50];
struct list_type *pl;
) LIST;

Appendix F 355

NAME: read_name;4
TITLE: Utility read_named

PARAMETERS:
read_sock: data_in
name_size : data_in
name : data_inont
LOCALS: nval

BODY:

/* S T i e e S e - S-S S .

Source Code Filename: read_name.c

Special Considerations; NONE

Purpose:
To read a character string (usually a name)
off of a specified socket identifier.

This is a utility function

#define _BSD

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sysfuio.h>
#include <ermo.h>

char *read_name(int sock, char *name, int name_size)

(
int nval; /* - retumn code value for read — */

/* — allocate space for the name — */
name = (char *)malloc(name_size);

/* — read name — */

nval = read(sock, name, name_size);
if (nval < 0)

{

perror(“‘read_name: read”);

exit(l);

}

retum(name);

} /* — end read_name.c — */

Appendix F

*/

356

NAME: write_header4
TITLE: Utility write_headerd

PARAMETERS:
header : data_in
write_sock : data_in
LOCALS:

BODY:

”

Source Code Filename: write_header.c

Special Considerations: NONE

Purpose:
To write a header to a specified socket
identifier.

This is a utility function used by all components
i S S S — *l

#idefine _BSD

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sysfiio.h>
#include <ermo.h>
#include “../mysock2.h”

void write_header(int sock, HEADER header)

(
if(write(sock, &header, sizeof(HEADER)) < 0)
{
perror(“write header: write header™);
exit(1);
)
retum;
} /* — end write_header.c — */

Appendix F

357

NAME: write_name;4
TITLE: Utility write_name

PARAMETERS:
name : data_in
write_sock : data_in
name_size : data_in
LOCALS:

BODY:

™ ===

Source Code Filename: write_name.c

Special Considerations: NONE

Purpose:
To write a character string (usually a name)
to a specified socket identifier.

This is a utility
—e=======z=zuz== ¥/

#define _BSD

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/uio.h>
#iinciude <ermo.h>

void write_name(int sock, char *name, int name_size)

{

if(write(sock, name, name_size) < 0)
{
perror(“write name: write name");
exit(1);
}

retumn;
} /* — end write_name.c — %/

Appendix F

358

VITA
As a child, Michele Grieshaber spent much of her time doing arts and crafts. Some of
her greatest accomplishments include a surrealist drawing of a clown done in a Crayola
medium, a key chain made from gimp (stringy plastic stuff that melts if left in a hot
car), and a set of wind chimes made from driftwood, sea shells, and dental floss. Not
many people realize the artistic potential of dental floss. Life was not always easy for a
struggling young artist, so when it came time to plan for the future, she decided to train
herself for a more practical career. In the fall of 1983, she was accepted into the
engineering curriculum of Virginia Polytechnic Institute and State University. During
her senior year, she was one of four participants in the first exchange program between
Virginia Tech and the Universite de Technologie de Compiegne, FRANCE. A
semester after her return to the U.S., she received her Bachelor's degree. She then
completed her Masters in 1988, just before leaving for Paris to study at Ecole Centrale
des Arts et Manufactures as a Fulbright Fellow. Although tempted to remain in Paris
to study under Fifi Van Gogh (third cousin twice removed of Vince), a renowned artist

in dental floss sculpture, Michele returned to Virginia Tech to pursue a PhD.

Vita 359

